Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. Tsai, HL; Deng, WP; Lai, WF; Chiu, WT; Yang, CB; Tsai, YH; Hwang, SM; Renshaw, PF PloS one
9
e104937
2014
Show Abstract
Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells. | Immunofluorescence | Human | 25170755
|
NC1 domain of collagen α3(IV) derived from the basement membrane regulates Sertoli cell blood-testis barrier dynamics. Wong, EW; Cheng, CY Spermatogenesis
3
e25465
2013
Show Abstract
The blood-testis barrier (BTB) is an important ultrastructure for spermatogenesis. Delay in BTB formation in neonatal rats or its irreversible damage in adult rats leads to meiotic arrest and failure of spermatogonial differentiation beyond type A. While hormones, such as testosterone and FSH, are crucial to BTB function, little is known if there is a local regulatory mechanism in the seminiferous epithelium that modulates BTB function. Herein, we report that collagen α3(IV) chain, a component of the basement membrane in the rat testis, could generate a noncollagenous (NC1) domain peptide [Colα3(IV) NC1] via limited proteolysis by matrix metalloproteinase-9 (MMP-9), and that the expression of MMP-9 was upregulated by TNFα. While recombinant Colα3(IV) NC1 protein produced in E. coli failed to perturb Sertoli cell tight junction (TJ)-permeability barrier function, possibly due to the lack of glycosylation, Colα3(IV) NC1 recombinant protein produced in mammalian cells and purified to apparent homogeneity by affinity chromatography was found to reversibly perturb the Sertoli cell TJ-barrier function. Interestingly, Colα3(IV) NC1 recombinant protein did not perturb the steady-state levels of several TJ- (e.g., occludin, CAR, JAM-A, ZO-1) and basal ectoplasmic specialization- (e.g., N-cadherin, α-catenin, β-catenin) proteins at the BTB but induced changes in protein localization and/or distribution at the Sertoli cell-cell interface in which these proteins moved from the cell surface into the cell cytosol, thereby destabilizing the TJ function. These findings illustrate the presence of a local regulatory axis known as the BTB-basement membrane axis that regulates BTB restructuring during spermatogenesis. | Immunofluorescence | Rat | 23885308
|
Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Gurney, A; Axelrod, F; Bond, CJ; Cain, J; Chartier, C; Donigan, L; Fischer, M; Chaudhari, A; Ji, M; Kapoun, AM; Lam, A; Lazetic, S; Ma, S; Mitra, S; Park, IK; Pickell, K; Sato, A; Satyal, S; Stroud, M; Tran, H; Yen, WC; Lewicki, J; Hoey, T Proceedings of the National Academy of Sciences of the United States of America
109
11717-22
2012
Show Abstract
The Wnt/β-catenin pathway, which signals through the Frizzled (Fzd) receptor family and several coreceptors, has long been implicated in cancer. Here we demonstrate a therapeutic approach to targeting the Wnt pathway with a monoclonal antibody, OMP-18R5. This antibody, initially identified by binding to Frizzled 7, interacts with five Fzd receptors through a conserved epitope within the extracellular domain and blocks canonical Wnt signaling induced by multiple Wnt family members. In xenograft studies with minimally passaged human tumors, this antibody inhibits the growth of a range of tumor types, reduces tumor-initiating cell frequency, and exhibits synergistic activity with standard-of-care chemotherapeutic agents. | | | 22753465
|
Epithelial-mesenchymal transition biomarkers and support vector machine guided model in preoperatively predicting regional lymph node metastasis for rectal cancer. Fan, XJ; Wan, XB; Huang, Y; Cai, HM; Fu, XH; Yang, ZL; Chen, DK; Song, SX; Wu, PH; Liu, Q; Wang, L; Wang, JP British journal of cancer
106
1735-41
2012
Show Abstract
Current imaging modalities are inadequate in preoperatively predicting regional lymph node metastasis (RLNM) status in rectal cancer (RC). Here, we designed support vector machine (SVM) model to address this issue by integrating epithelial-mesenchymal-transition (EMT)-related biomarkers along with clinicopathological variables.Using tissue microarrays and immunohistochemistry, the EMT-related biomarkers expression was measured in 193 RC patients. Of which, 74 patients were assigned to the training set to select the robust variables for designing SVM model. The SVM model predictive value was validated in the testing set (119 patients).In training set, eight variables, including six EMT-related biomarkers and two clinicopathological variables, were selected to devise SVM model. In testing set, we identified 63 patients with high risk to RLNM and 56 patients with low risk. The sensitivity, specificity and overall accuracy of SVM in predicting RLNM were 68.3%, 81.1% and 72.3%, respectively. Importantly, multivariate logistic regression analysis showed that SVM model was indeed an independent predictor of RLNM status (odds ratio, 11.536; 95% confidence interval, 4.113-32.361; Pless than 0.0001).Our SVM-based model displayed moderately strong predictive power in defining the RLNM status in RC patients, providing an important approach to select RLNM high-risk subgroup for neoadjuvant chemoradiotherapy. | Immunohistochemistry | | 22538975
|
Molecular prognostic prediction for locally advanced nasopharyngeal carcinoma by support vector machine integrated approach. Wan, XB; Zhao, Y; Fan, XJ; Cai, HM; Zhang, Y; Chen, MY; Xu, J; Wu, XY; Li, HB; Zeng, YX; Hong, MH; Liu, Q PloS one
7
e31989
2012
Show Abstract
Accurate prognostication of locally advanced nasopharyngeal carcinoma (NPC) will benefit patients for tailored therapy. Here, we addressed this issue by developing a mathematical algorithm based on support vector machine (SVM) through integrating the expression levels of multi-biomarkers.Ninety-seven locally advanced NPC patients in a randomized controlled trial (RCT), consisting of 48 cases serving as training set and 49 cases as testing set of SVM models, with 5-year follow-up were studied. We designed SVM models by selecting the variables from 38 tissue molecular biomarkers, which represent 6 tumorigenesis signaling pathways, and 3 EBV-related serological biomarkers. We designed 3 SVM models to refine prognosis of NPC with 5-year follow-up. The SVM1 displayed highly predictive sensitivity (sensitivity, specificity were 88.0% and 81.9%, respectively) by integrating the expression of 7 molecular biomarkers. The SVM2 model showed highly predictive specificity (sensitivity, specificity were 84.0% and 94.5%, respectively) by grouping the expression level of 12 molecular biomarkers and 3 EBV-related serological biomarkers. The SVM3 model, constructed by combination SVM1 with SVM2, displayed a high predictive capacity (sensitivity, specificity were 88.0% and 90.3%, respectively). We found that 3 SVM models had strong power in classification of prognosis. Moreover, Cox multivariate regression analysis confirmed these 3 SVM models were all the significant independent prognostic model for overall survival in testing set and overall patients.Our SVM prognostic models designed in the RCT displayed strong power in refining patient prognosis for locally advanced NPC, potentially directing future target therapy against the related signaling pathways. | | | 22427815
|
Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Giuliani, N; Morandi, F; Tagliaferri, S; Lazzaretti, M; Donofrio, G; Bonomini, S; Sala, R; Mangoni, M; Rizzoli, V Cancer research
67
7665-74
2007
Show Abstract
Osteoblast impairment occurs within multiple myeloma cell infiltration into the bone marrow. Canonical Wnt signaling activation in osteoprogenitor cells is involved in osteoblast formation through the stabilization of dephosphorylated beta-catenin and its nuclear translocation. The effects of multiple myeloma cells on Wnt signaling in human mesenchymal/osteoprogenitor cells are unclear. In 60 multiple myeloma patients checked, we found that among the Wnt inhibitors, Dickkopf-1 and secreted frizzled-related protein-3 were produced by multiple myeloma cells. However, although multiple myeloma cells or multiple myeloma bone marrow plasma affected expression of genes in the canonical Wnt signaling and inhibited beta-catenin stabilization in murine osteoprogenitor cells, they failed to block the canonical Wnt pathway in human mesenchymal or osteoprogenitor cells. Consistently, Wnt3a stimulation in human osteoprogenitor cells did not blunt the inhibitory effect of multiple myeloma cells on osteoblast formation. Consequently, despite the higher Wnt antagonist bone marrow levels in osteolytic multiple myeloma patients compared with nonosteolytic ones, beta-catenin immunostaining was not significantly different. Our results support the link between the production of Wnt antagonists by multiple myeloma cells and the presence of bone lesions in multiple myeloma patients but show that myeloma cells do not inhibit canonical Wnt signaling in human bone microenvironment. | | | 17702698
|
Mesenchymal transformation in epithelial ovarian tumor cells expressing epidermal growth factor receptor variant III. Reema Zeineldin,Martina Rosenberg,Dominic Ortega,Christian Buhr,Miquella G Chavez,M Sharon Stack,Donna F Kusewitt,Laurie G Hudson Molecular carcinogenesis
45
2006
Show Abstract
Overexpression of the epidermal growth factor (EGF) receptor occurs frequently in ovarian cancer and is associated with poor patient prognosis. A constitutively active mutant EGF receptor termed variant III (EGFRvIII) has been detected at a high frequency in many human tumors, including those of the ovary. To identify the consequences of EGFRvIII expression in ovarian tumor cells, we introduced EGFRvIII into the epithelial ovarian cancer cell line (OVCA 433). The EGFRvIII-transfected cells displayed a dissociated, motile phenotype and fibroblastic morphology. The EGFRvIII-dependent phenotype was comparable to that observed in EGF-stimulated parental OVCA 433 cultures and required the catalytic activity of the mutant receptor. Disruption of adherens and desmosomal junctions in EGFRvIII expressing cells was evident by immunofluorescent detection of specific junctional components. In addition, Western blot analysis confirmed decreased levels of cellular plakoglobin and beta-catenin in EGFRvIII-expressing cells, and E-cadherin protein and mRNA were nearly absent. The loss of E-cadherin was accompanied by decreased expression of additional ovarian epithelial markers, including keratins 7, 8, and 18 and mucins 1 and 4. In contrast, the mesenchymal markers N-cadherin and vimentin were elevated in EGFRvIII expressing cells. Overall, the switch in cadherins from E-cadherin to N-cadherin, coupled with gain of vimentin expression and loss of the epithelial keratins and mucins typically expressed in well-differentiated epithelial ovarian carcinomas, are consistent with transition to a mesenchymal phenotype as an outcome of EGFRvIII expression. These findings suggest that EGFRvIII expression may regulate phenotypic plasticity in ovarian cancer and thereby contribute to more aggressive disease. | | | 16788982
|
Posttranslational regulation of plakoglobin expression. Influence of the desmosomal cadherins on plakoglobin metabolic stability. Kowalczyk, A P, et al. J. Biol. Chem., 269: 31214-23 (1994)
1994
Show Abstract
Desmosomes are adhesive intercellular junctions that act as cell surface attachment sites for intermediate filaments. The desmosomal glycoproteins, desmogleins and desmocollins, are members of the cadherin family of adhesion molecules. In addition, desmoglein has been shown to coimmunoprecipitate with the junctional protein plakoglobin. To characterize further the interaction between plakoglobin and the desmosomal cadherins, stable mouse fibroblast (L-cells) cell lines were generated that express plakoglobin, desmoglein and plakoglobin, or desmocollin and plakoglobin. L-cell lines transfected with a plasmid encoding human plakoglobin expressed plakoglobin mRNA but very little plakoglobin protein. However, plakoglobin protein was expressed at high levels in L-cells coexpressing either desmoglein or desmocollin. In addition, both desmocollin and desmoglein were found to coimmunoprecipitate with plakoglobin. The transient expression of desmoglein in L-cell lines expressing plakoglobin mRNA resulted in the formation of a complex between plakoglobin and desmoglein and in the accumulation of plakoglobin protein. Furthermore, the rate of plakoglobin protein degradation was decreased by 15-20-fold in cell lines expressing either desmoglein or desmocollin. These results demonstrate that the desmosomal cadherins posttranslationally regulate plakoglobin expression by decreasing the rate of plakoglobin degradation. | | | 7983064
|