An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss. Ward, CL; Ji, L; Corona, BT BioResearch open access
4
198-208
2015
Afficher le résumé
Volumetric muscle loss (VML) is a hallmark of orthopedic trauma with no current standard of care. As a potential therapy for some VML indications, autologous minced muscle grafts (1 mm(3) pieces of muscle) are effective in promoting remarkable de novo fiber regeneration. But they require ample donor muscle tissue and therefore may be limited in their application for large clinical VML. Here, we tested the hypothesis that autologous minced grafts may be volume expanded in a collagen hydrogel, allowing for the use of lesser autologous muscle while maintaining regenerative and functional efficacy. The results of the study indicate that 50% (but not 75%) less minced graft tissue suspended in a collagen hydrogel promoted a functional improvement similar to that of a 100% minced graft repair. However, approximately half of the number of fibers regenerated de novo with 50% graft repair. Moreover, the fibers that regenerated had a smaller cross-sectional area. These findings support the concept of using autologous minced grafts for the regeneration of muscle tissue after VML, but indicate the need to identify optimal carrier materials for expansion. | | | 26309796
|
Heterogeneity in arterial remodeling among sublines of spontaneously hypertensive rats. Bakker, EN; Groma, G; Spijkers, LJ; de Vos, J; van Weert, A; van Veen, H; Everts, V; Arribas, SM; VanBavel, E PloS one
9
e107998
2014
Afficher le résumé
Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines.We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness.Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats. | Immunohistochemistry | Rat | 25251068
|
Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Corona, BT; Garg, K; Ward, CL; McDaniel, JS; Walters, TJ; Rathbone, CR American journal of physiology. Cell physiology
305
C761-75
2013
Afficher le résumé
Volumetric muscle loss (VML) results in a large void deficient in the requisite materials for regeneration for which there is no definitive clinical standard of care. Autologous minced muscle grafts (MG), which contain the essential components for muscle regeneration, may embody an ideal tissue engineering therapy for VML. The purpose of this study was to determine if orthotopic transplantation of MG acutely after VML in the tibialis anterior muscle of male Lewis rats promotes functional tissue regeneration. Herein we report that over the first 16 wk postinjury, MG transplantation 1) promotes remarkable regeneration of innervated muscle fibers within the defect area (i.e., de novo muscle fiber regeneration); 2) reduced evidence of chronic injury in the remaining muscle mass compared with nonrepaired muscles following VML (i.e., transplantation attenuated chronically upregulated transforming growth factor-β1 gene expression and the presence of centrally located nuclei in 30% of fibers observed in nonrepaired muscles); and 3) significantly improves net torque production (i.e., ∼55% of the functional deficit in nonrepaired muscles was restored). Additionally, voluntary wheel running was shown to reduce the heightened accumulation of extracellular matrix deposition observed within the regenerated tissue of MG-repaired sedentary rats 8 wk postinjury (collagen 1% area: sedentary vs. runner, ∼41 vs. 30%), which may have been the result of an augmented inflammatory response [i.e., M1 (CCR7) and M2 (CD163) macrophage expression was significantly greater in runner than sedentary MG-repaired muscles 2 wk postinjury]. These findings support further exploration of autologous minced MGs for the treatment of VML. | | | 23885064
|
Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a β-catenin-dependent manner. Yang, Z; Hai, B; Qin, L; Ti, X; Shangguan, L; Zhao, Y; Wiggins, L; Liu, Y; Feng, JQ; Chang, JY; Wang, F; Liu, F Molecular and cellular biology
33
4732-44
2013
Afficher le résumé
The differentiation of dental epithelia into enamel-producing ameloblasts or the root epithelial lineage compartmentalizes teeth into crowns and roots. Bmp signaling has been linked to enamel formation, but its role in root epithelial lineage differentiation is unclear. Here we show that cessation of epithelial Bmp signaling by Bmpr1a depletion during the differentiation stage switched differentiation of crown epithelia into the root lineage and led to formation of ectopic cementum-like structures. This phenotype is related to the upregulation of Wnt/β-catenin signaling and epithelial-mesenchymal transition (EMT). Although epithelial β-catenin depletion during the differentiation stage also led to variable enamel defect and precocious/ectopic formation of fragmented root epithelia in some teeth, it did not cause ectopic cementogenesis and inhibited EMT in cultured dental epithelia. Concomitant epithelial β-catenin depletion rescued EMT and ectopic cementogenesis caused by Bmpr1a depletion. These data suggested that Bmp and Wnt/β-catenin pathways interact antagonistically in dental epithelia to regulate the root lineage differentiation and EMT. These findings will aid in the design of new strategies to promote functional differentiation in the regeneration and tissue engineering of teeth and will provide new insights into the dynamic interactions between the Bmp and Wnt/β-catenin pathways during cell fate decisions. | | | 24081330
|
Intra-articular changes precede extra-articular changes in the biceps tendon after rotator cuff tears in a rat model. Cathryn D Peltz,Jason E Hsu,Miltiadis H Zgonis,Nicholas A Trasolini,David L Glaser,Louis J Soslowsky Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.]
21
2011
Afficher le résumé
Biceps tendon pathology is common with rotator cuff tears. The mechanisms for biceps changes, and therefore its optimal treatment, are unknown. Our objective was to determine the effect of rotator cuff tears on regional biceps tendon pathology. We hypothesized that histologic and compositional changes would appear before organizational changes, both would appear before mechanical changes, and changes would begin at the tendon's insertion site. | | | 21816629
|
Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress. Strauß, S; Dudziak, S; Hagemann, R; Barcikowski, S; Fliess, M; Israelowitz, M; Kracht, D; Kuhbier, JW; Radtke, C; Reimers, K; Vogt, PM PloS one
7
e51264
2011
Afficher le résumé
The development of large tissue engineered bone remains a challenge in vitro, therefore the use of hybrid-implants might offer a bridge between tissue engineering and dense metal or ceramic implants. Especially the combination of the pseudoelastic implant material Nitinol (NiTi) with adipose derived stem cells (ASCs) opens new opportunities, as ASCs are able to differentiate osteogenically and therefore enhance osseointegration of implants. Due to limited knowledge about the effects of NiTi-structures manufactured by selective laser melting (SLM) on ASCs the study started with an evaluation of cytocompatibility followed by the investigation of the use of SLM-generated 3-dimensional NiTi-structures preseeded with ASCs as osteoimplant model. In this study we could demonstrate for the first time that osteogenic differentiation of ASCs can be induced by implant-mediated mechanical stimulation without support of osteogenic cell culture media. By use of an innovative implant design and synthesis via SLM-technique we achieved high rates of vital cells, proper osteogenic differentiation and mechanically loadable NiTi-scaffolds could be achieved. | Immunocytochemistry | Human | 23236461
|
Structural and functional analysis of intra-articular interzone tissue in axolotl salamanders. Cosden-Decker, RS; Bickett, MM; Lattermann, C; MacLeod, JN Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society
20
1347-56
2011
Afficher le résumé
Knowledge of mechanisms directing diarthrodial joint development may be useful in understanding joint pathologies and identifying new therapies. We have previously established that axolotl salamanders can fully repair large articular cartilage lesions, which may be due to the presence of an interzone-like tissue in the intra-articular space. Study objectives were to further characterize axolotl diarthrodial joint structure and determine the differentiation potential of interzone-like tissue in a skeletal microenvironment.Diarthrodial joint morphology and expression of aggrecan, brother of CDO (BOC), type I collagen, type II collagen, and growth/differentiation factor 5 (GDF5) were examined in femorotibial joints of sexually mature (greater than 12 months) axolotls. Joint tissue cellularity was evaluated in individuals from 2 to 24 months of age. Chondrogenic potential of the interzone was evaluated by placing interzone-like tissue into 4 mm tibial defects.Cavitation reached completion in the femoroacetabular and humeroradial joints, but an interzone-like tissue was retained in the intra-articular space of distal limb joints. Joint tissue cellularity decreased to 7 months of age and then remained stable. Gene expression patterns of joint markers are broadly similar in developing mammals and mature axolotls. When interzone-like tissue was transplanted into critical size skeletal defects, an accessory joint developed within the defect site.These experiments indicate that mature axolotl diarthrodial joints are phenotypically similar to developing synovial joints in mammals. Generation of an accessory joint by interzone-like tissue suggests multipotent cellular differentiation potential similar to that of interzone cells in the mammalian fetus. The data support the axolotl as a novel vertebrate model for joint development and repair. | Immunohistochemistry | | 22800772
|
A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Wu, X; Corona, BT; Chen, X; Walters, TJ BioResearch open access
1
280-90
2011
Afficher le résumé
Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. | | | 23515319
|
Cell-derived matrix enhances osteogenic properties of hydroxyapatite. Gregory Tour,Mikael Wendel,Ion Tcacencu Tissue engineering. Part A
17
2010
Afficher le résumé
The study aimed to evaluate osteogenic properties of hydroxyapatite (HA) scaffold combined with extracellular matrix (ECM) derived in vitro from rat primary calvarial osteoblasts or dermal fibroblasts. The cellular viability, and the ECM deposited onto synthetic HA microparticles were assessed by MTT, Glycosaminoglycan, and Hydroxyproline assays as well as immunohistochemistry and scanning electron microscopy after 21 days of culture. The decellularized HA-ECM constructs were implanted in critical-sized calvarial defects of Sprague-Dawley rats, followed by bone repair and local inflammatory response assessments by histomorphometry and immunohistochemistry at 12 weeks postoperatively. We demonstrated that HA supported cellular adhesion, growth, and ECM production in vitro, and the HA-ECM constructs significantly enhanced calvarial bone repair (p<0.05, Mann-Whitney U-test), compared with HA alone, despite the significantly increased number of CD68+ macrophages, and foreign body giant cells (p<0.05, Mann-Whitney U-test). Selective accumulation of bone sialoprotein, osteopontin, and periostin was observed at the tissue-HA interfaces. In conclusion, in vitro-derived ECM mimics the native bone matrix, enhances the osteogenic properties of the HA microparticles, and might modulate the local inflammatory response in a bone repair-favorable way. Our findings highlight the ability to produce functional HA-ECM constructs for bone tissue engineering applications. | | | 20695777
|
Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Patricia L Danielsen,Anders V Holst,Henrik R Maltesen,Maria R Bassi,Peter J Holst,Katja M Heinemeier,Jørgen Olsen,Carl C Danielsen,Steen S Poulsen,Lars N Jorgensen,Magnus S Agren Surgery
150
2010
Afficher le résumé
The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus-driven transduction of full-length Mmp8 (AdMMP-8). | | | 21875735
|