Dual inhibition of αV integrins and Src kinase activity as a combination therapy strategy for colorectal cancer. Jia, J; Starodub, A; Cushman, I; Liu, Y; Marshall, DJ; Hurwitz, HI; Nixon, AB Anti-cancer drugs
24
237-50
2013
Afficher le résumé
Both Src and αV integrins are important for tumor growth and angiogenesis. They are interconnected and responsible for important features of the tumor phenotype including invasiveness, metastasis, angiogenesis, and resistance to apoptosis. This study examines whether combinational inhibition of both integrin and Src pathways would exert greater antiangiogenesis and antitumor effects than either pathway alone. Using in-vitro cell culture systems, the activity of CNTO95 (Intetumumab), an αV integrin inhibitor, and dasatinib, an Src inhibitor, on proliferation, adhesion, and migration was evaluated in colon cancer cell lines, HCT-116 and RKO, as well as HUVEC cells. The antiangiogenic effect of this combinatory regimen was also tested using an in-vitro tubular network formation assay. The effects of CNTO95 and dasatinib on the activation of Src and integrin pathway signal transduction were also determined by western blotting. The combination of CNTO95 plus dasatinib inhibited adhesion, migration, and paxillin phosphorylation in both HCT-116 and RKO cells. CNTO95 and dasatinib also led to increased apoptosis of HCT-116 cells; however, similar effects were not observed in RKO cells. In addition, dual treatment of CNTO95 and dasatinib exerted enhanced effects on HUVEC cell proliferation, invasion, tubular network formation, and paxillin phosphorylation. In conclusion, our results suggest that concurrent inhibition of both the integrin and the Src pathways exert more pronounced antiangiogenic and antitumor effects than with either pathway being inhibited alone. | 23275294
|
Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. Lily Boo,Lakshmi Selvaratnam,Cheh Chin Tai,Tunku Sara Ahmad,Tunku Kamarul Journal of materials science. Materials in medicine
22
2010
Afficher le résumé
The use of mesenchymal stem cells (MSCs) in tissue repair and regeneration despite their multipotentiality has been limited by their cell source quantity and decelerating proliferative yield efficiency. A study was thus undertaken to determine the feasibility of using microcarrier beads in spinner flask cultures for MSCs expansion and compared to that of conventional monolayer cultures and static microcarrier cultures. Isolation and characterization of bone marrow derived MSCs were conducted from six adult New Zealand white rabbits. Analysis of cell morphology on microcarriers and culture plates at different time points (D0, D3, D10, D14) during cell culture were performed using scanning electron microscopy and bright field microscopy. Cell proliferation rates and cell number were measured over a period of 14 days, respectively followed by post-expansion characterization. MTT proliferation assay demonstrated a 3.20 fold increase in cell proliferation rates in MSCs cultured on microcarriers in spinner flask as compared to monolayer cultures (p < 0.05). Cell counts at day 14 were higher in those seeded on stirred microcarrier cultures (6.24 ± 0.0420 cells/ml) × 10(5) as compared to monolayer cultures (0.22 ± 0.004 cells/ml) × 10(5) and static microcarrier cultures (0.20 ± 0.002 cells/ml) × 10(5). Scanning electron microscopy demonstrated an increase in cell colonization of the cells on the microcarriers in stirred cultures. Bead-expanded MSCs were successfully differentiated into osteogenic and chondrogenic lineages. This system offers an improved and efficient alternative for culturing MSCs with preservation to their phenotype and multipotentiality. | 21461701
|
Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells. Lindberg K, Ström A, Lock JG, Gustafsson JA, Haldosén LA, Helguero LA J Cell Physiol
222
156-67.
2009
Afficher le résumé
Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERalpha and ERbeta). Estrogen-bound ERalpha induces proliferation of mammary epithelial and cancer cells, while ERbeta is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERbeta levels compared to the early stage breast cancers, suggesting that loss of ERbeta could be important in cancer development. Analysis of ERbeta-/- mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERbeta is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERalpha and ERbeta. As ERbeta is widely found in breast cancer but not in cell lines, we used ERalpha positive T47-D and MCF-7 human breast cancer cells to generate cells with inducible ERbeta expression. Furthermore, the colon cancer cell lines SW480 and HT-29 were also used. Integrin alpha1 mRNA and protein levels increased following ERbeta expression. Integrin beta1-the unique partner for integrin alpha1-increased only at the protein level. ERbeta expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERbeta increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERbeta expression was associated to less cell migration. These results indicate that ERbeta affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells. | 19780039
|
Alterations in integrin expression modulates invasion of pancreatic cancer cells. Walsh, N; Clynes, M; Crown, J; O'Donovan, N Journal of experimental & clinical cancer research : CR
28
140
2009
Afficher le résumé
Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood.In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression.Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion.Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma. Article en texte intégral | 19825166
|
Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Zhang, X; Fournier, MV; Ware, JL; Bissell, MJ; Yacoub, A; Zehner, ZE Molecular cancer therapeutics
8
499-508
2009
Afficher le résumé
Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to beta-catenin, E-cadherin, or alpha6 and beta1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of alpha6 and beta1integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and beta1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. Article en texte intégral | 19276168
|
Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. LaBarge, MA; Nelson, CM; Villadsen, R; Fridriksdottir, A; Ruth, JR; Stampfer, MR; Petersen, OW; Bissell, MJ Integrative biology : quantitative biosciences from nano to macro
1
70-9
2009
Afficher le résumé
In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages. | 20023793
|
Anti-integrin monoclonal antibody CNTO 95 enhances the therapeutic efficacy of fractionated radiation therapy in vivo. Ning, S; Nemeth, JA; Hanson, RL; Forsythe, K; Knox, SJ Molecular cancer therapeutics
7
1569-78
2008
Afficher le résumé
Selective targeting of up-regulated integrins on tumor cells is a novel antiangiogenesis strategy for treating solid tumors. CNTO 95 is a fully human anti-alpha(v) integrin monoclonal antibody and has shown antitumor activity when used as a single agent in preclinical studies. We previously showed that radiation combined with an integrin alpha(v)beta(3) antagonist cRGD peptide increased the therapeutic efficacy of radiation in preclinical tumor models. We hypothesized that the combination of radiation and CNTO 95 would synergistically enhance the efficacy of radiation therapy. The in vitro studies showed that CNTO 95 radiosensitized and induced apoptosis in M21 cells in vitronectin-coated dishes. In mice bearing established human cancer xenograft tumors, CNTO 95 alone had only a moderate effect on tumor growth. The combined therapy of CNTO 95 and fractionated radiation significantly inhibited tumor growth and produced the longer tumor growth delay time in multiple tumor models. Maintenance dosing of CNTO 95 following irradiation contributed to efficacy and was important for continued inhibition of tumor regrowth. Immunohistochemistry studies showed that the combined use of CNTO 95 and radiation reduced the alpha(v) integrin and vascular endothelial growth factor receptor expression and the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. CNTO 95 alone and in combination with radiation did not produce any obvious signs of systemic toxicity. These results show that CNTO 95 can potentiate the efficacy of fractionated radiation therapy in a variety of human cancer xenograft tumor types in nude mice. These findings are very promising and may have high translational relevance for the treatment of patients with solid tumors. | 18566227
|
The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. Bolduc, GR; Madoff, LC Microbiology (Reading, England)
153
4039-49
2007
Afficher le résumé
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells. | 18048918
|
The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. Besson, A; Wilson, TL; Yong, VW The Journal of biological chemistry
277
22073-84
2002
Afficher le résumé
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility. | 11934885
|
Epiligrin, a component of epithelial basement membranes, is an adhesive ligand for alpha 3 beta 1 positive T lymphocytes. Wayner, E A, et al. J. Cell Biol., 121: 1141-52 (1993)
1992
Afficher le résumé
The cutaneous T cell lymphomas (CTCL), typified by mycosis fungoides, and several chronic T cell mediated dermatoses are characterized by the migration of T lymphocytes into the epidermis (epidermotropism). Alternatively, other types of cutaneous inflammation (malignant cutaneous B cell lymphoma, CBCL, or lymphocytoma cutis, non-malignant T or B cell type) do not show evidence of epidermotropism. This suggests that certain T lymphocyte subpopulations are able to interact with and penetrate the epidermal basement membrane. We show here that T lymphocytes derived from patients with CTCL (HUT 78 or HUT 102 cells), adhere to the detergent-insoluble extracellular matrix prepared from cultured basal keratinocytes (HFK ECM). HUT cell adhesion to HFK ECM was inhibitable with monoclonal antibodies (mAbs) directed to the alpha 3 (P1B5) or beta 1 (P4C10) integrin receptors, and could be up-regulated by an activating anti-beta 1 mAb (P4G11). An inhibitory mAb, P3H9-2, raised against keratinocytes identified epiligrin as the ligand for alpha 3 beta 1 positive T cells in HFK ECM. Interestingly, two lymphocyte populations could be clearly distinguished relative to expression of alpha 3 beta 1 by flow cytometry analysis. Lymphokine activated killer cells, alloreactive cytotoxic T cells and T cells derived from patients with CTCL expressed high levels of alpha 3 beta 1 (alpha 3 beta 1high). Non-adherent peripheral blood mononuclear cells, acute T or B lymphocytic leukemias, or non-cutaneous T or B lymphocyte cell lines expressed low levels of alpha 3 beta 1 (alpha 3 beta 1low). Resting PBL or alpha 3 beta 1low T or B cell lines did not adhere to HFK ECM or purified epiligrin. However, adhesion to epiligrin could be up-regulated by mAbs which activate the beta 1 subunit indicating that alpha 3 beta 1 activity is a function of expression and affinity. In skin derived from patients with graft-vs.-host (GVH) disease, experimentally induced delayed hypersensitivity reactions, and CTCL, the infiltrating T cells could be stained with mAbs to alpha 3 or beta 1 and were localized in close proximity to the epiligrin-containing basement membrane. Infiltrating lymphocytes in malignant cutaneous B disease (CBCL) did not express alpha 3 beta 1 by immunohistochemical techniques and did not associate with the epidermal basement membrane. The present findings clearly define a function for alpha 3 beta 1 in T cells and strongly suggest that alpha 3 beta 1 interaction with epiligrin may be involved in the pathogenesis of cutaneous inflammation. | 8501119
|