Millipore Sigma Vibrant Logo
 

saline


391 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (326)
  • (1)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Hypertonic saline ameliorates cerebral edema through downregulation of aquaporin-4 expression in the astrocytes. 20083168

    Osmotherapy with 10% hypertonic saline (HS) alleviates cerebral edema through osmotic force. Aquaporin-4 (AQP4) has been reported to be implicated in the pathogenesis of cerebral edema resulting from a variety of brain injury. This study aimed to determine if 10% hypertonic saline ameliorates cerebral edema through downregulation of AQP4 expression in the perivascular astrocytes in the ischemic cerebral edema. Adult male Sprague-Dawley (SD) rats were subjected to permanent right-sided middle cerebral artery occlusion (MCAO) and treated with a continuous i.v. infusion of 10% HS. Brain water content (BWC) analyzed by wet-to-dry ratios in the ischemic hemisphere of SD rats was attenuated after 10% HS treatment. This was coupled with the reduction of neuronal apoptosis in the peri-ischemic brain tissue. Concomitantly, downregulated expression of AQP4 in the perivascular astrocytes after 10% HS treatment was observed. Our results suggest that in addition to its osmotic force, 10% HS exerts anti-edema effects possibly through downregulation of AQP4 expression in the perivascular astrocytes. The reduction of brain edema after 10% HS administration can prevent ischemic brain damage. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB3594-50UL
    Produktbezeichnung:
    Anti-Aquaporin 4 Antibody, CT
  • Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation. 24916922

    Hypertonic saline (HS) has been successfully used clinically for treatment of various forms of cerebral edema. Up-regulated expression of Na-K-Cl Cotransporter 1 (NKCC1) and inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) has been demonstrated to be closely associated with the pathogenesis of cerebral edema resulting from a variety of brain injuries. This study aimed to explore if alleviation of cerebral edema by 10% HS might be effected through down-regulation of inflammatory mediator expression in the microglia, and thus result in decreased NKCC1 expression in astrocytes in the cerebral cortex bordering the ischemic core.The Sprague-Dawley (SD) rats that underwent right-sided middle cerebral artery occlusion (MCAO) were used for assessment of NKCC1, TNF-α and IL-1β expression using Western blotting, double immunofluorescence and real time RT-PCR, and the model also was used for evaluation of brain water content (BWC) and infarct size. SB203580 and SP600125, specific inhibitors of the p38 and JNK signaling pathways, were used to treat primary microglia cultures to determine whether the two signaling pathways were required for the inhibition of HS on microglia expressing and secreting TNF-α and IL-1β using Western blotting, double immunofluorescence and enzyme-linked immunosorbent assay (ELISA). The effect of TNF-α and IL-1β on NKCC1 expression in primary astrocyte cultures was determined. In addition, the direct inhibitory effect of HS on NKCC1 expression in primary astrocytes was also investigated by Western blotting, double immunofluorescence and real time RT-PCR.BWC and infarct size decreased significantly after 10% HS treatment. TNF-α and IL-1β immunoexpression in microglia was noticeably decreased. Concomitantly, NKCC1 expression in astrocytes was down-regulated. TNF-α and IL-1β released from the primary microglia subjected to hypoxic exposure and treatment with 100 mM HS were decreased. NKCC1 expression in primary astrocytes was concurrently and progressively down-regulated with decreasing concentration of exogenous TNF-α and IL-1β. Additionally, 100 mM HS directly inhibited NKCC1 up-regulation in astrocytes under hypoxic condition.The results suggest that 10% HS alleviates cerebral edema through inhibition of the NKCC1 Cotransporter, which is mediated by attenuation of TNF-α and IL-1β stimulation on NKCC1.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Natronorubrum sediminis sp. nov., an archaeon isolated from a saline lake. 19767366

    Two novel haloalkaliphilic archaea, strains CG-6(T) and CG-4, were isolated from sediment of the hypersaline Lake Chagannor in Inner Mongolia, China. Cells of the two strains were pleomorphic, non-motile and strictly aerobic. They required at least 2.5 M NaCl for growth, with optimum growth at 3.4 M NaCl. They grew at pH 8.0-11.0, with optimum growth at pH 9.0. Hypotonic treatment with less than 1.5 M NaCl caused cell lysis. The two strains had similar polar lipid compositions, possessing C(20)C(20) and C(20)C(25) derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Comparison of 16S rRNA gene sequences and morphological features placed them in the genus Natronorubrum. 16S rRNA gene sequence similarities to strains of recognized species of the genus Natronorubrum were 96.2-93.8 %. Detailed phenotypic characterization and DNA-DNA hybridization studies revealed that the two strains belong to a novel species in the genus Natronorubrum, for which the name Natronorubrum sediminis sp. nov. is proposed; the type strain is CG-6(T) (=CECT 7487(T) =CGMCC 1.8981(T) =JCM 15982(T)).
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    2100
    Produktbezeichnung:
    Protein-Concentrate Kit (Micro)
  • Different neuronal populations of the rat median preoptic nucleus express c-fos during sleep and in response to hypertonic saline or angiotensin-II. 16210350

    The median preoptic nucleus (MnPN) of the hypothalamus contains sleep-active neurones, and sleep-related Fos-immunoreactivity (IR) in this nucleus is primarily expressed in GABAergic cells. The MnPN also contains cells responsive to hypertonic saline and to angiotensin-II (Ang-II). To clarify functional relationships between MnPN neurones involved in the regulation of sleep and body fluid homeostasis, we examined c-fos expression in the MnPN after administration of hypertonic saline and Ang-II in both spontaneously sleeping and sleep-deprived rats. Systemic administration of hypertonic saline and intracerebroventricular (i.c.v.) injection of Ang-II increased Fos-IR in both spontaneously sleeping and sleep-deprived rats, compared to control animals. To determine if the population of MnPN neurones activated in response to osmotic and hormonal stimuli is similar to or different from neurones activated during sleep, we quantified Fos-IR in MnPN GABAergic neurones in spontaneously sleeping hypertonic saline- and Ang-II-treated rats versus respective control rats. Fos-IR evoked by these treatments occurred primarily (80-85%) in non-GABAergic neurones. Findings of the present study provide evidence that separate populations of MnPN neurones are involved in the regulation of sleep and body fluid homeostasis.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB5406
    Produktbezeichnung:
    Anti-GAD67 Antibody, clone 1G10.2
  • Chondrocyte phenotype and ectopic ossification in collagenase-induced tendon degeneration. 18824634

    We report chondrocyte phenotype and ectopic ossification in a collagenase-induced patellar tendon injury model. Collagenase or saline was injected intratendinously in one limb. The patella tendon was harvested for assessment at different times. There was an increase in cellularity, vascularity, and loss of matrix organization with time after collagenase injection. The tendon did not heal histologically until week 32. Ectopic mineralization as indicated by von Kossa staining started from week 8. Tendon calcification was mediated by endochondral ossification, as shown by expression of type X collagen. viva CT imaging and polarization microscopy showed characteristic bony porous structures and collagen fiber arrangement, respectively, in the calcific regions. Marrow-like cells and blood vessels were observed inside calcific deposits. Chondrocyte-like cells as indicated by morphology, expression of type II collagen, and sox 9 were seen around and embedded inside the calcific deposits. Fibroblast-like cells expressed type II collagen and sox 9 at earlier times, suggesting that erroneous differentiation of healing tendon fibroblasts may account for failed healing and ossification in collagenase-induced tendon degeneration. Because this animal model replicates key histopathological changes in calcific tendinopathy, it can be used as a model for the study of its pathogenesis at the patellar tendon.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. 12522814

    Mesenchymal stem cells (MSCs) have the capacity for self-renewal and can form bone, fat, and cartilage. Alginate forms a viscous solution when dissolved in 0.9% saline and gels on contact with divalent cations. The viability and phenotype maintenance of chondrocytes in alginate beads have been well documented. However, little is known about the effect of microencapsulation in alginate on chondrogenesis of MSCs. In this study, human MSCs encapsulated in alginate beads were cultured in serum-free medium with the addition of transforming growth factor (TGF)beta1 (10 ng/mL), dexamethasone (10(-7) M), and ascorbate 2-phosphate (50 microg/mL). The MSCs in alginate assumed a rounded morphology with lacunae around them after 1 week in culture. Cell aggregates were observed at 2 weeks or longer in culture. Histological findings agreed with the clinical determination of hyaline cartilage, characterized by isolated cells with ground substance positive in Safranin-O staining and immunohistochemistry for collagen type II at the periphery of cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the expression of COL2A1 and COL10A1, marker of chondrocytes and hypertrophy chondrocytes, respectively. These results indicate MSCs in alginate can form cartilage and the MSCs-alginate system represents a relevant model for the study of the molecular mechanisms involved in the chondrogenesis and endochondral ossification.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1330
    Produktbezeichnung:
    Anti-Collagen Type II Antibody, clone COLL-II
  • Assessment of the potential role of muscle spindle mechanoreceptor afferents in chronic muscle pain in the rat masseter muscle. 20559566

    The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in "functional" pain syndromes.Acidic saline (AS, pH 4.0) injections into the masseter muscle were used to induce persistent myalgia. Controls received saline at pH 7.2. Nocifensive responses of Experimental rats to applications of Von Frey Filaments to the masseters were above control levels 1-38 days post-injection. This effect was bilateral. Expression of c-Fos in the Trigeminal Mesencephalic Nucleus (NVmes), which contains the somata of masseter muscle spindle afferents (MSA), was above baseline levels 1 and 4 days after AS. The resting membrane potentials of neurons exposed to AS (n = 167) were hyperpolarized when compared to their control counterparts (n = 141), as were their thresholds for firing, high frequency membrane oscillations (HFMO), bursting, inward and outward rectification. The amplitude of HFMO was increased and spontaneous ectopic firing occurred in 10% of acid-exposed neurons, but never in Controls. These changes appeared within the same time frame as the observed nocifensive behaviour. Ectopic action potentials can travel centrally, but also antidromically to the peripheral terminals of MSA where they could cause neurotransmitter release and activation of adjacent fibre terminals. Using immunohistochemistry, we confirmed that annulospiral endings of masseter MSA express the glutamate vesicular transporter VGLUT1, indicating that they can release glutamate. Many capsules also contained fine fibers that were labelled by markers associated with nociceptors (calcitonin gene-related peptide, Substance P, P2X3 receptors and TRPV1 receptors) and that expressed the metabotropic glutamate receptor, mGluR5. Antagonists of glutamatergic receptors given together with the 2(nd) injection of AS prevented the hypersensitivity observed bilaterally but were ineffective if given contralaterally.Low pH leads to changes in several electrical properties of MSA, including initiation of ectopic action potentials which could propagate centrally but could also invade the peripheral endings causing glutamate release and activation of nearby nociceptors within the spindle capsule. This peripheral drive could contribute both to the transition to, and maintenance of, persistent muscle pain as seen in some "functional" pain syndromes.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB5675
    Produktbezeichnung:
    Anti-Metabotropic Glutamate Receptor 5 Antibody, pain
  • Inhibition of CXCR1 and CXCR2 chemokine receptors attenuates acute inflammation, preserves gray matter and diminishes autonomic dysreflexia after spinal cord injury. 20877331

    Study design:Female Wistar rats (225 g) underwent spinal cord injury (SCI) at the T4 segment and were assigned to one of the three groups treated with: (1) saline; (2) 7.5 mg kg(-1) Reparixin; or (3) 15 mg kg(-1) Reparixin. Reparixin is a small molecule, allosteric noncompetitive inhibitor of CXCR1 and CXCR2 chemokine receptors involved in inflammation.Methods:Spinal cord homogenates at 12 and 72 h post-SCI were assayed for tumor necrosis factor α (TNF-α) and cytokine-induced neutrophil chemoattractant (CINC)-1 using enzyme-linked immunosorbant assay (ELISA). Myeloperoxidase activity and western blots for CD68, Fas and p75 content were used to assess inflammation and death receptor ligands, respectively. Histopathology and neurological outcomes were assessed by immunohistochemistry, locomotion scoring and cardiovascular measurement of autonomic dysreflexia 4 weeks post-SCI.Results:Both 7.5 and 15 mg kg(-1) doses of Reparixin reduced levels of TNF-α and CINC-1 72 h post-SCI and decreased macrophage (CD68) content in the spinal cord lesion. Only 15 mg kg(-1) Reparixin reduced both Fas and p75 levels in the spinal cord compared with untreated SCI. We observed a reduced lesion area and increased neuron number in the gray matter of Reparixin-treated rats. Hindlimb motor scores at 7 and 28 days post-SCI were improved by 15 mg kg(-1) Reparixin treatment. Both 7.5 and 15 mg kg(-1) Reparixin reduced development of autonomic dysreflexia 4 weeks post-SCI. The change in mean arterial pressure, induced by cutaneous or visceral stimulation, was reduced by 40-50%.Conclusion:Acute treatment with 15 mg kg(-1) Reparixin reduces acute inflammation and is associated with minor improvements in motor function and a significant reduction in the severity of autonomic dysreflexia.Spinal Cord advance online publication, 28 September 2010; doi:10.1038/sc.2010.127.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB5804
    Produktbezeichnung:
    Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
  • Neurotensin in the rat parabrachial region: ultrastructural localization and extrinsic sources of immunoreactivity. 3522659

    We sought to determine (1) the ultrastructural localization and (2) the extrinsic sources of neurotensin-like immunoreactivity (NTLI) in the parabrachial region (PBR). The brains from untreated adult male rats and from others that received intraventricular injections of colchicine (100 micrograms/7.5 microliters saline) 24 hours prior to death were fixed by perfusion with acrolein or glutaraldehyde and paraformaldehyde. Coronal sections were immunocytochemically labeled with a polyclonal rabbit antiserum to neurotensin and the PAP method. Western dot-blots and immunocytochemical labeling with adsorbed antiserum revealed significant cross-reaction only against NT, NT8-13, and glutamine (Gln)4-NT. In the ultrastructural study, the most numerous labeled profiles were axons and axon terminals in both colchicine-treated and control animals. The terminals containing NTLI were characterized by a mixed population of small, clear and large, dense core vesicles; asymmetric junctions principally with unlabeled dendrites; and a few synaptic specializations with unlabeled axon terminals. Compared to axon terminals, relatively few perikarya or dendrites had detectable levels of NTLI in either untreated or colchicine-treated animals. The labeled perikarya measured 8-10 microns in longest cross-sectional diameter, contained NTLI throughout a narrow rim of cytoplasm, and received a few somatic synapses from unlabeled terminals. From the relative density of axon terminals and sparsity of perikarya and dendrites, we conclude that the NTLI in the PBR is principally derived from extrinsic neurons. However, the intrinsic neurons with NTLI may also contribute to the immunoreactivity in the axon terminals of the PBR. We sought to determine the precise location of the extrinsic neurons that contribute to the NTLI in axon terminals in the PBR. Following unilateral injections of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), dual labeling was most evident in a large population of neurons located in the dorsal, medial and commissural nuclei of the solitary tracts, ipsilateral to the side of the injection. However, a few perikarya containing both the retrogradely transported WGA-HRP and immunocytochemical labels for NT were also detected in the caudal ventrolateral reticular formation, the locus coeruleus, and the paraventricular and lateral hypothalamic nuclei. We conclude that (1) NT or a closely related peptide is present in intrinsic neurons and multiple afferent pathways to the PBR; and (2) the axon terminals with NTLI have synaptic interactions with dendrites of intrinsic neurons and with axon terminals that may have either extrinsic or intrinsic origins.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB5496