Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
AG208
Sigma-AldrichVesicular Glutamate Transporter 1, control peptide for AB5905
Vesicular Glutamate Transporter 1, control peptide for AB5905
Overview
Synthetic peptide from rat VGLUT1 protein.
Alternate Names
VGLUT1
BNPI
Background Information
VGLUT1 is expressed in a subset of glutamate neurons and transports glutamate into native synaptic vesicles from the brain, exhibiting a conductance for chloride that is blocked by glutamate. Vesicular glutamate transport has a substantially lower apparent affinity than the plasma membrane excitatory amino acid transporters. Glutamate transport by VGLUT1 is saturated with a K(m) of approximately 2 mM, in the same range as transport by synaptic vesicles. Finally, plasma membrane glutamate transporters recognize both aspartate and glutamate as substrates, whereas VGLUT1 does not recognize aspartate.
FUNCTION: SwissProt: Mediates the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. May also mediate the transport of inorganic phosphate. SIZE: 560 amino acids; 61665 Da [MW of unprocessed precursor] SUBCELLULAR LOCATION: Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane. Membrane; Multi-pass membrane protein (Potential). Cell junction, synapse, synaptosome. TISSUE SPECIFICITY: Expressed in the cerebellum, cerberal cortex and hippocampus. Isoform 2 is expressed specifically in retina. SIMILARITY: Belongs to the major facilitator superfamily. Sodium/anion cotransporter family. VGLUT subfamily.
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Storage and Shipping Information
Storage Conditions
Maintain at -20°C in undiluted aliquots for up to 3 months after date of receipt. Avoid repeated freeze/thaw cycles.
Packaging Information
Material Size
100 µg
Transport Information
Supplemental Information
Specifications
Global Trade Item Number
Bestellnummer
GTIN
AG208
04053252282812
Documentation
Vesicular Glutamate Transporter 1, control peptide for AB5905 SDB
Synaptotagmins I and II in the developing rat auditory brainstem: Synaptotagmin I is transiently expressed in glutamate-releasing immature inhibitory terminals. Alan P Cooper,Deda C Gillespie The Journal of comparative neurology
519
2010
The lateral superior olive (LSO), a nucleus in the auditory brainstem, computes interaural intensity differences for sound localization by comparing converging excitatory and inhibitory inputs that carry tonotopically matched information from the two ears. Tonotopic refinement in the inhibitory projection pathway from the medial nucleus of the trapezoid body (MNTB) is known to be established during the first postnatal week in rats. During this period, immature MNTB terminals in the LSO contain vesicular transporters for both inhibitory and excitatory amino acids and release glutamate. The primary Ca(2+) sensors for vesicular release in the CNS are understood to be synaptotagmins, and in adult auditory brainstem synaptotagmin 2 is the predominant synaptotagmin. We asked here whether a different Ca(2+) sensor might be expressed in the immature auditory brainstem. We have found that synaptotagmin 1 is indeed expressed transiently in the immature auditory brainstem, most highly in those areas that receive glutamate-releasing immature inhibitory inputs from the MNTB, and that during the first postnatal week synaptotagmin 1 co-localizes with the vesicular glutamate transporter VGLUT3, a marker of glutamate-releasing immature inhibitory terminals from the MNTB. We suggest that immature MNTB terminals may contain two populations of synaptic vesicles, one expressing the vesicular inhibitory amino acid transporter together with synaptotagmin 2 and another expressing VGLUT3 together with synaptotagmin 1. Because Ca(2+) sensing is an important determinant of release properties for the presynaptic terminal, differential expression of the synaptotagmins might allow the differential release of excitatory and inhibitory neurotransmitters in response to differing patterns of neural activity.
Fast plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. Alain C Burette,Emanuel E Strehler,Richard J Weinberg The Journal of comparative neurology
512
2009
The plasma membrane Ca(2+)-ATPases (PMCA) represent the major high-affinity Ca(2+) extrusion system in the brain. PMCAs comprise four isoforms and over 20 splice variants. Their different functional properties may permit different PMCA splice variants to accommodate different kinds of local [Ca(2+)] transients, but for a specific PMCA to play a unique role in local Ca(2+) handling it must be targeted to the appropriate subcellular compartment. We used immunohistochemistry to study the spatial distribution of PMCA2a-one of the two major carboxyl-terminal splice variants of PMCA2-in the adult rat brain, testing whether this isoform, with especially high basal activity, is targeted to specific subcellular compartments. In striking contrast to the widespread distribution of PMCA2 as a whole, we found that PMCA2a is largely restricted to parvalbumin-positive inhibitory presynaptic terminals throughout the brain. The only major exception to this targeting pattern was in the cerebellar cortex, where PMCA2a also concentrates postsynaptically, in the spines of Purkinje cells. We propose that the fast Ca(2+) activation kinetics and high V(max) of PMCA2a make this pump especially suited for rapid clearance of presynaptic Ca(2+) in fast-spiking inhibitory nerve terminals, which face severe transient calcium loads.
Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. Olivia N Dumitrescu,Francesco G Pucci,Kwoon Y Wong,David M Berson The Journal of comparative neurology
517
2009
A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON-type amacrine and ganglion cells. However, M1 melanopsin-expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole-cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL.
VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord. Ida J Llewellyn-Smith,Carolyn L Martin,Natalie M Fenwick,Stephen E Dicarlo,Heidi L Lujan,Ann M Schreihofer The Journal of comparative neurology
503
2007
Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN.