Spinal changes of a newly isolated neuropeptide endomorphin-2 concomitant with vincristine-induced allodynia. Yang, Y; Zhang, YG; Lin, GA; Xie, HQ; Pan, HT; Huang, BQ; Liu, JD; Liu, H; Zhang, N; Li, L; Chen, JH PloS one
9
e89583
2014
Abstract anzeigen
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain unclear. There is increasing evidence implicating the involvement of spinal endomorphin-2 (EM2) in neuropathic pain. In this study, we used a vincristine-evoked rat CNP model displaying mechanical allodynia and central sensitization, and observed a significant decrease in the expression of spinal EM2 in CNP. Also, while intrathecal administration of exogenous EM2 attenuated allodynia and central sensitization, the mu-opioid receptor antagonist β-funaltrexamine facilitated these events. We found that the reduction in spinal EM2 was mediated by increased activity of dipeptidylpeptidase IV, possibly as a consequence of chemotherapy-induced oxidative stress. Taken together, our findings suggest that a decrease in spinal EM2 expression causes the loss of endogenous analgesia and leads to enhanced pain sensation in CNP. | Immunohistochemistry | 24586889
 |
Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the seasonal Siberian hamster (Phodopus sungorus). Michael Helwig,Zoë A Archer,Gerhard Heldmaier,Alexander Tups,Julian G Mercer,Martin Klingenspor Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
195
2009
Abstract anzeigen
Central regulation of energy balance in seasonal mammals such as the Siberian hamster is dependent on the precise integration of short-term satiety information arising from the gastrointestinal tract with long-term signals on the status of available energy reserves (e.g. leptin) and prevailing photoperiod. Within the central nervous system, the brainstem nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN) are major relay nuclei that transmit information from the gastrointestinal tract to higher forebrain centres. We extended studies on the seasonal programming of the hypothalamus to examine the effect of the photoperiod on neuropeptidergic circuitries of this gut-brain axis. In the NTS and PBN we performed gene expression and immunoreactivity (-ir) studies on selected satiety-related neuropeptides and receptors: alpha-melanocyte stimulating hormone, melanocortin-3 receptor, melanocortin-4 receptor (MC4-R), growth hormone secretagogue-receptor, cocaine- and amphetamine-regulated transcript, preproglucagon (PPG), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY, galanin, neurotensin, and corticotrophin releasing hormone (CRH). Gene expression of PPG and MC4-R, and -ir of CCK and GLP-1, in the NTS were up-regulated after 14 weeks in long-day photoperiod (16 h light:8 h dark) compared to short-days (8 h light:16 h dark), whereas CRH-ir and NT-ir were increased in short-days within the PBN. We suggest that brainstem neuroendocrine mechanisms contribute to the long-term regulation of body mass in the Siberian hamster by a photoperiod-related modulation of satiety signalling. | | 19347341
 |
PC1/3 and PC2 gene expression and post-translational endoproteolytic pro-opiomelanocortin processing is regulated by photoperiod in the seasonal Siberian hamster (Phodopus sungorus). M Helwig, R M H Khorooshi, A Tups, P Barrett, Z A Archer, C Exner, J Rozman, L J Braulke, J G Mercer, M Klingenspor 2005
| | |
Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells. Y H Huang,M J Sun,M Jiang,B Y Fu European journal of histochemistry : EJH
53
2001
Abstract anzeigen
We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP) in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells) and PP-cells (PP-secreting cells) were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells. | | 19683981
 |