Epigenetics of Notch1 regulation in pulmonary microvascular rarefaction following extrauterine growth restriction. Tang, LL; Zhang, LY; Lao, LJ; Hu, QY; Gu, WZ; Fu, LC; Du, LZ Respiratory research
16
66
2015
Abstract anzeigen
Extrauterine growth restriction (EUGR) plays an important role in the developmental origin of adult cardiovascular diseases. In an EUGR rat model, we reported an elevated pulmonary arterial pressure in adults and genome-wide epigenetic modifications in pulmonary vascular endothelial cells (PVECs). However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular consequences later in life remains unclear.A rat model was used to investigate the physiological and structural effect of EUGR on early pulmonary vasculature by evaluating right ventricular systolic pressure and pulmonary vascular density in male rats. Epigenetic modifications of the Notch1 gene in PVECs were evaluated.EUGR decreased pulmonary vascular density with no significant impact on right ventricular systolic pressure at 3 weeks. Decreased transcription of Notch1 was observed both at 3 and 9 weeks, in association with decreased downstream target gene, Hes-1. Chromatin immunoprecipitation and bisulfite sequencing were performed to analyze the epigenetic modifications of the Notch1 gene promoter in PVECs. EUGR caused a significantly increased H3K27me3 in the proximal Notch1 gene promoter, and increased methylation of single CpG sites in the distal Notch1 gene promoter, both at 3 and 9 weeks.We conclude that EUGR results in decreased pulmonary vascular growth in association with decreased Notch1 in PVECs. This may be mediated by increased CpG methylation and H3K27me3 in the Notch1 gene promoter region. | | | 26040933
|
Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells. Rui, Y; Xu, L; Chen, R; Zhang, T; Lin, S; Hou, Y; Liu, Y; Meng, F; Liu, Z; Ni, M; Tsang, KS; Yang, F; Wang, C; Chan, HC; Jiang, X; Li, G Scientific reports
5
11056
2015
Abstract anzeigen
Mesenchymal stem cells (MSCs) are highly plastic cells that are able to transdifferentiate or dedifferentiate under appropriate conditions. In the present study, we reported here that after in vitro induction of osteogenic differentiation, MSCs could be reverted to a primitive stem cell population (dedifferentiated osteogenic MSCs, De-Os-MSCs) with improved cell survival, colony formation, osteogenic potential, migratory capacity and increased expression of Nanog, Oct4 and Sox2. Most importantly, our results showed great superiority of the De-Os-MSCs over untreated MSCs in ectopic bone formation in vivo. Furthermore, Nanog-knockdown in MSCs could reverse these enhanced properties in De-Os-MSCs in vitro, indicating a central role of Nanog in the transcriptional network. In addition, epigenetic regulations including DNA methylation and histone modifications may play important roles in regulating the de-osteogenic differentiation process. And we found decreased methylation and promoter accrual of activating histone marks, such as H3K4me3 and H4ac on both Nanog and Oct4 gene promoters. Taken together, our study demonstrated that epigenetic memory in De-Os-MSCs gained by priming with osteogenic induction medium favored their differentiation along osteoblastic lineage with improved cell survival and migratory abilities, which may have application potential in enhancing their regenerative capacity in mammals. | | | 26053250
|
IL-21-mediated non-canonical pathway for IL-1β production in conventional dendritic cells. Wan, CK; Li, P; Spolski, R; Oh, J; Andraski, AB; Du, N; Yu, ZX; Dillon, CP; Green, DR; Leonard, WJ Nature communications
6
7988
2015
Abstract anzeigen
The canonical pathway for IL-1β production requires TLR-mediated NF-κB-dependent Il1b gene induction, followed by caspase-containing inflammasome-mediated processing of pro-IL-1β. Here we show that IL-21 unexpectedly induces IL-1β production in conventional dendritic cells (cDCs) via a STAT3-dependent but NF-κB-independent pathway. IL-21 does not induce Il1b expression in CD4(+) T cells, with differential histone marks present in these cells versus cDCs. IL-21-induced IL-1β processing in cDCs does not require caspase-1 or caspase-8 but depends on IL-21-mediated death and activation of serine protease(s). Moreover, STAT3-dependent IL-1β expression in cDCs at least partially explains the IL-21-mediated pathologic response occurring during infection with pneumonia virus of mice. These results demonstrate lineage-restricted IL-21-induced IL-1β via a non-canonical pathway and provide evidence for its importance in vivo. | | | 26269257
|
Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Manna, S; Kim, JK; Baugé, C; Cam, M; Zhao, Y; Shetty, J; Vacchio, MS; Castro, E; Tran, B; Tessarollo, L; Bosselut, R Nature communications
6
8152
2015
Abstract anzeigen
Although histone H3 lysine 27 trimethylation (H3K27Me3) is associated with gene silencing, whether H3K27Me3 demethylation affects transcription and cell differentiation in vivo has remained elusive. To investigate this, we conditionally inactivated the two H3K27Me3 demethylases, Jmjd3 and Utx, in non-dividing intrathymic CD4(+) T-cell precursors. Here we show that both enzymes redundantly promote H3K27Me3 removal at, and expression of, a specific subset of genes involved in terminal thymocyte differentiation, especially S1pr1, encoding a sphingosine-phosphate receptor required for thymocyte egress. Thymocyte expression of S1pr1 was not rescued in Jmjd3- and Utx-deficient male mice, which carry the catalytically inactive Utx homolog Uty, supporting the conclusion that it requires H3K27Me3 demethylase activity. These findings demonstrate that Jmjd3 and Utx are required for T-cell development, and point to a requirement for their H3K27Me3 demethylase activity in cell differentiation. | | | 26328764
|
A gene expression signature identifying transient DNMT1 depletion as a causal factor of cancer-germline gene activation in melanoma. Cannuyer, J; Van Tongelen, A; Loriot, A; De Smet, C Clin Epigenetics
7
114
2015
Abstract anzeigen
Many human tumors show aberrant activation of a group of germline-specific genes, termed cancer-germline (CG) genes, several of which appear to exert oncogenic functions. Although activation of CG genes in tumors has been linked to promoter DNA demethylation, the mechanisms underlying this epigenetic alteration remain unclear. Two main processes have been proposed: awaking of a gametogenic program directing demethylation of target DNA sequences via specific regulators, or general deficiency of DNA methylation activities resulting from mis-targeting or down-regulation of the DNMT1 methyltransferase.By the analysis of transcriptomic data, we searched to identify gene expression changes associated with CG gene activation in melanoma cells. We found no evidence linking CG gene activation with differential expression of gametogenic regulators. Instead, CG gene activation correlated with decreased expression of a set of mitosis/division-related genes (ICCG genes). Interestingly, a similar gene expression signature was previously associated with depletion of DNMT1. Consistently, analysis of a large set of melanoma tissues revealed that DNMT1 expression levels were often lower in samples showing activation of multiple CG genes. Moreover, by using immortalized melanocytes and fibroblasts carrying an inducible anti-DNMT1 small hairpin RNA (shRNA), we demonstrate that transient depletion of DNMT1 can lead to long-term activation of CG genes and repression of ICCG genes at the same time. For one of the ICCG genes (CDCA7L), we found that its down-regulation in melanoma cells was associated with deposition of repressive chromatin marks, including H3K27me3.Together, our observations point towards transient DNMT1 depletion as a causal factor of CG gene activation in vivo in melanoma. | | | 26504497
|
Brg1 modulates enhancer activation in mesoderm lineage commitment. Alexander, JM; Hota, SK; He, D; Thomas, S; Ho, L; Pennacchio, LA; Bruneau, BG Development (Cambridge, England)
142
1418-30
2015
Abstract anzeigen
The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. These findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions. | | | 25813539
|
D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Ma, S; Jiang, B; Deng, W; Gu, ZK; Wu, FZ; Li, T; Xia, Y; Yang, H; Ye, D; Xiong, Y; Guan, KL Oncotarget
6
8606-20
2015
Abstract anzeigen
Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases. We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines. Inhibition of D-2-HG production either by specific deletion of the mutant IDH1-R132C allele or overexpression of D-2-hydroxyglutarate dehydrogenase (D2HGDH) increases α-KG and related metabolites, restores the activity of some α-KG-dependent dioxygenases, and selectively alters gene expression. Ablation of D-2-HG production has no significant effect on cell proliferation and migration, but strongly inhibits anchorage independent growth in vitro and tumor growth in xenografted mouse models. Our study identifies a new activity of oncometabolite D-2-HG in promoting tumorigenesis. | | | 25825982
|
In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks. Hu, Y; Sun, Q; Li, X; Wang, M; Cai, D; Li, X; Zhao, R PloS one
10
e0122643
2015
Abstract anzeigen
Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P less than 0.05) and the hepatic content (P less than 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P less than 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P less than 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P less than 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P less than 0.05), which was associated with global genomic DNA hypermethylation (P less than 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P less than 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P less than 0.05) for CYP7A1 yet decreased (P less than 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations. | Western Blotting | | 25860502
|
Different epigenetic alterations are associated with abnormal IGF2/Igf2 upregulation in neural tube defects. Bai, B; Zhang, Q; Liu, X; Miao, C; Shangguan, S; Bao, Y; Guo, J; Wang, L; Zhang, T; Li, H PloS one
9
e113308
2014
Abstract anzeigen
The methylation status of DNA methylation regions (DMRs) of the imprinted gene IGF2/Igf2 is associated with neural tube defects (NTDs), which are caused by a failure of the neural tube to fold and close and are the second-most common birth defect; however, the characterization of the expression level of IGF2/Igf2 in neural tissue from human fetuses affected with NTDs remains elusive. More importantly, whether abnormal chromatin structure also influences IGF2/Igf2 expression in NTDs is unclear. Here, we investigated the transcriptional activity of IGF2/Igf2 in normal and NTD spinal cord tissues, the methylation status of different DMRs, and the chromatin structure of the promoter. Our data indicated that in NTD samples from both human fetuses and retinoic acid (RA)-treated mouse fetuses, the expression level of IGF2/Igf2 was upregulated 6.41-fold and 1.84-fold, respectively, compared to controls. H19 DMR1, but not IGF2 DMR0, was hypermethylated in human NTD samples. In NTD mice, h19 DMR1 was stable, whereas the chromatin structure around the promoter of Igf2 might be loosened, which was displayed by higher H3K4 acetylation and lower H3K27 trimethylation. Therefore, the data revealed that IGF2/Igf2 expression can be ectopically up-regulated by dual epigenetic factors in NTDs. In detail, the upregulation of IGF2/Igf2 is likely controlled by hypermethylation of H19 DMR1 in human NTDs, however, in acute external RA-induced NTD mice it is potentially determined by more open chromatin structure. | | | 25423083
|
Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Hahn, MA; Li, AX; Wu, X; Yang, R; Drew, DA; Rosenberg, DW; Pfeifer, GP Cancer research
74
3617-29
2014
Abstract anzeigen
In colon tumors, the transcription of many genes becomes deregulated by poorly defined epigenetic mechanisms that have been studied mainly in established cell lines. In this study, we used frozen human colon tissues to analyze patterns of histone modification and DNA cytosine methylation in cancer and matched normal mucosa specimens. DNA methylation is strongly targeted to bivalent H3K4me3- and H3K27me3-associated promoters, which lose both histone marks and acquire DNA methylation. However, we found that loss of the Polycomb mark H3K27me3 from bivalent promoters was accompanied often by activation of genes associated with cancer progression, including numerous stem cell regulators, oncogenes, and proliferation-associated genes. Indeed, we found many of these same genes were also activated in patients with ulcerative colitis where chronic inflammation predisposes them to colon cancer. Based on our findings, we propose that a loss of Polycomb repression at bivalent genes combined with an ensuing selection for tumor-driving events plays a major role in cancer progression. | | | 24786786
|