Endocytic Adaptor Protein Tollip Inhibits Canonical Wnt Signaling. Toruń, A; Szymańska, E; Castanon, I; Wolińska-Nizioł, L; Bartosik, A; Jastrzębski, K; Miętkowska, M; González-Gaitán, M; Miaczynska, M PloS one
10
e0130818
2015
Abstract anzeigen
Many adaptor proteins involved in endocytic cargo transport exhibit additional functions in other cellular processes which may be either related to or independent from their trafficking roles. The endosomal adaptor protein Tollip is an example of such a multitasking regulator, as it participates in trafficking and endosomal sorting of receptors, but also in interleukin/Toll/NF-κB signaling, bacterial entry, autophagic clearance of protein aggregates and regulation of sumoylation. Here we describe another role of Tollip in intracellular signaling. By performing a targeted RNAi screen of soluble endocytic proteins for their additional functions in canonical Wnt signaling, we identified Tollip as a potential negative regulator of this pathway in human cells. Depletion of Tollip potentiates the activity of β-catenin/TCF-dependent transcriptional reporter, while its overproduction inhibits the reporter activity and expression of Wnt target genes. These effects are independent of dynamin-mediated endocytosis, but require the ubiquitin-binding CUE domain of Tollip. In Wnt-stimulated cells, Tollip counteracts the activation of β-catenin and its nuclear accumulation, without affecting its total levels. Additionally, under conditions of ligand-independent signaling, Tollip inhibits the pathway after the stage of β-catenin stabilization, as observed in human cancer cell lines, characterized by constitutive β-catenin activity. Finally, the regulation of Wnt signaling by Tollip occurs also during early embryonic development of zebrafish. In summary, our data identify a novel function of Tollip in regulating the canonical Wnt pathway which is evolutionarily conserved between fish and humans. Tollip-mediated inhibition of Wnt signaling may contribute not only to embryonic development, but also to carcinogenesis. Mechanistically, Tollip can potentially coordinate multiple cellular pathways of trafficking and signaling, possibly by exploiting its ability to interact with ubiquitin and the sumoylation machinery. | | 26110841
|
Drug synergy drives conserved pathways to increase fission yeast lifespan. Huang, X; Leggas, M; Dickson, RC PloS one
10
e0121877
2015
Abstract anzeigen
Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker's yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1) protein kinase, the protein kinase A (PKA) and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK). These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms. | Western Blotting | 25786258
|
FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2. Castella, M; Jacquemont, C; Thompson, EL; Yeo, JE; Cheung, RS; Huang, JW; Sobeck, A; Hendrickson, EA; Taniguchi, T PLoS genetics
11
e1005563
2015
Abstract anzeigen
The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway. | | 26430909
|
A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. Imtiaz, A; Kohrman, DC; Naz, S Human mutation
35
618-24
2014
Abstract anzeigen
More than 360 million humans are affected with some degree of hearing loss, either early or later in life. A genetic cause for the disorder is present in a majority of the cases. We mapped a locus (DFNB101) for hearing loss in humans to chromosome 5q in a consanguineous Pakistani family. Exome sequencing revealed an insertion mutation in GRXCR2 as the cause of moderate-to-severe and likely progressive hearing loss in the affected individuals of the family. The frameshift mutation is predicted to affect a conserved, cysteine-rich region of GRXCR2, and to result in an abnormal extension of the C-terminus. Functional studies by cell transfections demonstrated that the mutant protein is unstable and mislocalized relative to wild-type GRXCR2, consistent with a loss-of-function mutation. Targeted disruption of Grxcr2 is concurrently reported to cause hearing loss in mice. The structural abnormalities in this animal model suggest a role for GRXCR2 in the development of stereocilia bundles, specialized structures on the apical surface of sensory cells in the cochlea that are critical for sound detection. Our results indicate that GRXCR2 should be considered in differential genetic diagnosis for individuals with early onset, moderate-to-severe and progressive hearing loss. | Immunofluorescence | 24619944
|
Production of a recombinant antibody specific for i blood group antigen, a mesenchymal stem cell marker. Hirvonen, T; Suila, H; Tiitinen, S; Natunen, S; Laukkanen, ML; Kotovuori, A; Reinman, M; Satomaa, T; Alfthan, K; Laitinen, S; Takkinen, K; Räbinä, J; Valmu, L BioResearch open access
2
336-45
2013
Abstract anzeigen
Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen-positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. | | 24083089
|
The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. Ward, PS; Lu, C; Cross, JR; Abdel-Wahab, O; Levine, RL; Schwartz, GK; Thompson, CB The Journal of biological chemistry
288
3804-15
2013
Abstract anzeigen
Monoallelic point mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) and its mitochondrial homolog IDH2 can lead to elevated levels of 2-hydroxyglutarate (2HG) in multiple cancers. Here we report that cellular 2HG production from cytosolic IDH1 mutation is dependent on the activity of a retained wild-type IDH1 allele. In contrast, expression of mitochondrial IDH2 mutations led to robust 2HG production in a manner independent of wild-type mitochondrial IDH function. Among the recurrent IDH2 mutations at Arg-172 and Arg-140, IDH2 Arg-172 mutations consistently led to greater 2HG accumulation than IDH2 Arg-140 mutations, and the degree of 2HG accumulation correlated with the ability of these mutations to block cellular differentiation. Cytosolic IDH1 Arg-132 mutations, although structurally analogous to mutations at mitochondrial IDH2 Arg-172, were only able to elevate intracellular 2HG to comparable levels when an equivalent level of wild-type IDH1 was co-expressed. Consistent with 2HG production from cytosolic IDH1 being limited by substrate production from wild-type IDH1, we observed 2HG levels to increase in cancer cells harboring an endogenous monoallelic IDH1 mutation when mitochondrial IDH flux was diverted to the cytosol. Finally, expression of an IDH1 construct engineered to localize to the mitochondria rather than the cytosol resulted in greater 2HG accumulation. These data demonstrate that allelic and subcellular compartment differences can regulate the potential for IDH mutations to produce 2HG in cells. The consequences of 2HG elevation are dose-dependent, and the non-equivalent 2HG accumulation resulting from IDH1 and IDH2 mutations may underlie their differential prognosis and prevalence in various cancers. | | 23264629
|
The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress. Baker, LA; Ueberheide, BM; Dewell, S; Chait, BT; Zheng, D; Allis, CD Molecular and cellular biology
33
3735-48
2013
Abstract anzeigen
Regulation of gene expression is a vital part of the cellular stress response, yet the full set of proteins that orchestrate this regulation remains unknown. Snt2 is a Saccharomyces cerevisiae protein whose function has not been well characterized that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Here, we confirm that Snt2, Ecm5, and Rpd3 physically associate. We then demonstrate that cells lacking Rpd3 or Snt2 are resistant to hydrogen peroxide (H2O2)-mediated oxidative stress and use chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to show that Snt2 and Ecm5 recruit Rpd3 to a small number of promoters and in response to H2O2, colocalize independently of Rpd3 to the promoters of stress response genes. By integrating ChIP-seq and expression analyses, we identify target genes that require Snt2 for proper expression after H2O2. Finally, we show that cells lacking Snt2 are also resistant to nutrient stress imparted by the TOR (target of rapamycin) pathway inhibitor rapamycin and identify a common set of genes targeted by Snt2 and Ecm5 in response to both H2O2 and rapamycin. Our results establish a function for Snt2 in regulating transcription in response to oxidative stress and suggest Snt2 may also function in multiple stress pathways. | Western Blotting | 23878396
|
GRP78 overproduction in pancreatic beta cells protects against high-fat-diet-induced diabetes in mice. Teodoro-Morrison, T; Schuiki, I; Zhang, L; Belsham, DD; Volchuk, A Diabetologia
56
1057-67
2013
Abstract anzeigen
Endoplasmic reticulum (ER) stress has been detected in pancreatic beta cells and in insulin-sensitive tissues, such as adipose and liver, in obesity-linked rodent models of type 2 diabetes. The contribution of ER stress to pancreatic beta cell dysfunction in type 2 diabetes is unclear. We hypothesised that increased chaperone capacity protects beta cells from ER stress and dysfunction caused by obesity and improves overall glucose homeostasis.We generated a mouse model that overproduces the resident ER chaperone GRP78 (glucose-regulated protein 78 kDa) in pancreatic beta cells under the control of a rat insulin promoter. These mice were subjected to high-fat diet (HFD) feeding for 20 weeks and metabolic variables and markers of ER stress in islets were measured.As expected, control mice on the HFD developed obesity, glucose intolerance and insulin resistance. In contrast, GRP78 transgenic mice tended to be leaner than their non-transgenic littermates and were protected against development of glucose intolerance, insulin resistance and ER stress in islets. Furthermore, islets from transgenic mice had a normal insulin content and normal levels of cell-surface GLUT2 (glucose transporter 2) and the transgenic mice were less hyperinsulinaemic than control mice on the HFD.These data show that increased chaperone capacity in beta cells provides protection against the pathogenesis of obesity-induced type 2 diabetes by maintaining pancreatic beta cell function, which ultimately improves whole-body glucose homeostasis. | | 23475366
|
The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. Wang, AH; Zare, H; Mousavi, K; Wang, C; Moravec, CE; Sirotkin, HI; Ge, K; Gutierrez-Cruz, G; Sartorelli, V The EMBO journal
32
1075-86
2013
Abstract anzeigen
Histone chaperones affect chromatin structure and gene expression through interaction with histones and RNA polymerase II (PolII). Here, we report that the histone chaperone Spt6 counteracts H3K27me3, an epigenetic mark deposited by the Polycomb Repressive Complex 2 (PRC2) and associated with transcriptional repression. By regulating proper engagement and function of the H3K27 demethylase KDM6A (UTX), Spt6 effectively promotes H3K27 demethylation, muscle gene expression, and cell differentiation. ChIP-Seq experiments reveal an extensive genome-wide overlap of Spt6, PolII, and KDM6A at transcribed regions that are devoid of H3K27me3. Mammalian cells and zebrafish embryos with reduced Spt6 display increased H3K27me3 and diminished expression of the master regulator MyoD, resulting in myogenic differentiation defects. As a confirmation for an antagonistic relationship between Spt6 and H3K27me3, inhibition of PRC2 permits MyoD re-expression in myogenic cells with reduced Spt6. Our data indicate that, through cooperation with PolII and KDM6A, Spt6 orchestrates removal of H3K27me3, thus controlling developmental gene expression and cell differentiation. | Western Blotting | 23503590
|
Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Johnson, JM; French, SL; Osheim, YN; Li, M; Hall, L; Beyer, AL; Smith, JS Molecular and cellular biology
33
2748-59
2013
Abstract anzeigen
Ribosomal DNA (rDNA) genes in eukaryotes are organized into multicopy tandem arrays and transcribed by RNA polymerase I. During cell proliferation, ∼50% of these genes are active and have a relatively open chromatin structure characterized by elevated accessibility to psoralen cross-linking. In Saccharomyces cerevisiae, transcription of rDNA genes becomes repressed and chromatin structure closes when cells enter the diauxic shift and growth dramatically slows. In this study, we found that nucleosomes are massively depleted from the active rDNA genes during log phase and reassembled during the diauxic shift, largely accounting for the differences in psoralen accessibility between active and inactive genes. The Rpd3L histone deacetylase complex was required for diauxic shift-induced H4 and H2B deposition onto rDNA genes, suggesting involvement in assembly or stabilization of the entire nucleosome. The Spt16 subunit of FACT, however, was specifically required for H2B deposition, suggesting specificity for the H2A/H2B dimer. Miller chromatin spreads were used for electron microscopic visualization of rDNA genes in an spt16 mutant, which was found to be deficient in the assembly of normal nucleosomes on inactive genes and the disruption of nucleosomes on active genes, consistent with an inability to fully reactivate polymerase I (Pol I) transcription when cells exit stationary phase. | | 23689130
|