Direct comparison of the nature of mouse and human GST T1-1 and the implications on dichloromethane carcinogenicity. Sherratt, PJ; Williams, S; Foster, J; Kernohan, N; Green, T; Hayes, JD Toxicology and applied pharmacology
179
89-97
2002
Abstract anzeigen
Dichloromethane (DCM) is a hepatic and pulmonary carcinogen in mice exposed to high doses by inhalation. It has been shown previously that the incidence of liver and lung tumors does not increase in rats or hamsters exposed to the dihaloalkane under conditions similar to those that produced tumors in mice. The biological consequences of DCM exposure to humans is therefore uncertain. The carcinogenic effects of DCM in the mouse are caused by the interaction with DNA of a glutathione (GSH) conjugate that is produced by the class theta glutathione S-transferase T1-1 (GST T1-1). The species specificity is thought to be due to the greater amount of transferase activity in mouse target organs and specific nuclear localization of GST T1-1 in target cells. This paper directly compares the relative capacity and locality of DCM activation in mouse and human tissues. The results show that mouse GST T1-1 is more efficient in catalyzing the conjugation of DCM with GSH than the orthologous human enzyme. In addition, the mouse expresses higher levels of the transferase than humans in hepatic tissue. Histochemical analysis confirmed the presence of GST T1-1 in the nucleus of mouse liver cells. However, in human liver GST T1-1 was detected in bile duct epithelial cells and hepatocyte nuclei but was also present in the cytoplasm. Taking this information into account, it is unlikely that humans have a sufficiently high capacity to activate DCM for this compound to be considered to represent a carcinogenic risk. | 11884241
|
Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1-1 with that of classes Alpha, Mu and Pi GST in human. Sherratt, PJ; Pulford, DJ; Harrison, DJ; Green, T; Hayes, JD The Biochemical journal
326 ( Pt 3)
837-46
1997
Abstract anzeigen
The cDNA encoding human glutathione S-transferase (GST) T1 has been expressed as two recombinant forms in Escherichia coli that could be purified by affinity chromatography on either IgG-Sepharose or nickel-agarose; one form of the transferase was synthesized from the pALP 1 expression vector as a Staphylococcus aureus protein A fusion, whereas the other form was synthesized from the pET-20b expression vector as a C-terminal polyhistidine-tagged recombinant. The yields of the two purified recombinant proteins from E. coli cultures were approx. 15 mg/l for the protein A fusion and 25 mg/l for the C-terminal polyhistidine-tagged GST T1-1. The purified recombinant proteins were catalytically active, although the protein A fusion was typically only 5-30% as active as the histidine-tagged GST. Both recombinant forms could catalyse the conjugation of glutathione with the model substrates 1,2-epoxy-3-(4'-nitrophenoxy)propane,4-nitrobenzyl chloride and 4-nitrophenethyl bromide but were inactive towards 1-chloro-2,4-dinitrobenzene, ethacrynic acid and 1-menaphthyl sulphate. Recombinant human GST T1-1 was found to exhibit glutathione peroxidase activity and could catalyse the reduction of cumene hydroperoxide. In addition, recombinant human GST T1-1 was found to conjugate glutathione with dichloromethane, a pulmonary and hepatic carcinogen in the mouse. Immunoblotting with antibodies raised against different transferase isoenzymes showed that GST T1-1 is expressed in a large number of human organs in a tissue-specific fashion that differs from the pattern of expression of classes Alpha, Mu and Pi GST. Most significantly, GST T1-1 was found in only low levels in human pulmonary soluble extract of cells, suggesting that in man the lung has little capacity to activate the volatile dichloromethane. | 9307035
|
Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione S-transferase subunit that metabolize the mycotoxin. McLeod, R; Ellis, EM; Arthur, JR; Neal, GE; Judah, DJ; Manson, MM; Hayes, JD Cancer research
57
4257-66
1997
Abstract anzeigen
Fischer 344 rats fed on a diet that is deficient in selenium are more resistant to the hepatocarcinogen aflatoxin B1 (AFB1) than those fed on a selenium-sufficient diet. Hepatic cytosol from either selenium-deficient Fischer 344 rats or Hooded Lister rats possesses a marked increase in both reductase activity toward AFB1-dialdehyde and glutathione S-transferase (GST) activity toward AFB(1)-8,9-epoxide than hepatic cytosol from selenium-sufficient rats. The elevation in hepatic AFB1-aldehyde reductase (AFAR) activity in selenium-deficient animals is accompanied by an increase of 11- and 15-fold in the levels of AFAR protein in liver cytosol from Fischer 344 and Hooded Lister rats, respectively. The amount of AFAR protein in selenium-sufficient and -deficient Fischer rats was modulated by treatment with N-acetylcysteine; this antioxidant reduced basal expression of AFAR but did not modulate the relative overexpression of AFAR during selenium deficiency. The enhanced capacity to conjugate glutathione with AFB(1)-8,9-epoxide in selenium-deficient livers from Fischer 344 and Hooded Lister rats is associated with a 5- and 7-fold increase, respectively, in the hepatic levels of the AFB1-metabolizing alpha-class GSTA5 subunit. The elevated levels of AFAR and GSTA5 protein in the selenium-deficient animals coincided with increases in the steady-state levels of their mRNAs. In selenium-deficient Fischer 344 rats, AFAR and GSTA5 were both found to be expressed throughout the centrilobular and midzonal areas of the liver lobule but were essentially absent from periportal hepatocytes. The effect of selenium insufficiency is pleiotropic, and it was also noted that the theta-class GSTT1 is overexpressed 3- and 10-fold in livers of selenium-deficient Hooded Lister and Fischer 344 rats. Inasmuch as GSTT1 is responsible for the metabolic activation of dihaloalkanes, selenium deficiency may increase the susceptibility of rats to mutagens such as dichloromethane. | 9331086
|