Specificity of the polycation-stimulated (type-2A) and ATP,Mg-dependent (type-1) protein phosphatases toward substrates phosphorylated by P34cdc2 kinase. Agostinis, P, et al. Eur. J. Biochem., 205: 241-8 (1992)
1992
요약 표시
p34cdc2 kinase, a critical regulator of the cell cycle, has been shown to recognize the consensus sequence S/TP in proteins such as histone H1, the retinoblastoma gene product RB and the carboxyl-terminal domain of eukaryotic RNA polymerase II. Using phosphorylated synthetic peptides, representing the p34cdc2 phosphorylation sites in these proteins and histone H1 protein as substrates, we investigated the substrate specificity of the different oligomeric forms of the polycation-stimulated (PCS/type-2A) protein phosphatase and the active catalytic subunit of the ATP,Mg-dependent (AMDc/type 1) protein phosphatase. The results show that the oligomeric structure of the PCS phosphatases is an important determinant for efficient dephosphorylation. The trimeric PCSH1 and PCSM phosphatases are about 10-20-fold-better histone H1 phosphatases than the dimeric PCSH2 and PCSL phosphatases and about 100-fold better than the catalytic subunit (PCSC), suggesting a regulatory role for the 72-kDa, 65-kDa and 55-kDa subunits. The RB peptide = INGS(P)PRT(P)PRRGQNR, is preferred over phosphorylase a (8-fold) by the PCSH1 phosphatase and is about a 40-fold and 95-fold-better substrate for the PCSH1 phosphatase than for the PCSM and PCSL phosphatases, respectively. The primary structure surrounding the S/T(P)P motif, by itself a strong negative determinant for dephosphorylation, can harbour positive features which relieve the constraint imposed by the carboxyl-terminal proline. Thus, the RB peptide INGS(P)PRT(P)PRRGQNR, in which the T(P)P configuration is preferred over the S(P)P sequence, is an extremely good and specific substrate for the PCSH1 phosphatase (Km = 10 microM, Vmax = 3882 nmol.min-1.mg-1). The AMDC phosphatase is a poor phosphatase for all the phosphopeptides tested, unless Mn2+ is added. Its histone H1 phosphatase activity is much less sensitive than its phosphorylase a and phosphopeptide phosphatase activity to inhibition by the modulator or inhibitor-1. The results strongly suggest a role for the trimeric PCSH1 phosphatase in reversing the p34cdc2 phosphorylations. | Phosphatase Assay | 1313364
|
The use of phosphopeptides to distinguish between protein phosphatase and acid/alkaline phosphatase activities: opposite specificity toward phosphoseryl/phosphothreonyl substrates. Donella-Deana, A, et al. Biochim. Biophys. Acta, 1094: 130-3 (1991)
1991
요약 표시
The four main classes of protein phosphatases (PP-1, 2A, 2B and 2C), although differing in their ability to dephosphorylate phosphopeptide substrates, invariably display a marked preference toward phosphothreonyl peptides over their phosphoseryl counterparts. Conversely, all the acidic and alkaline phosphatases tested so far dephosphorylate phosphoseryl derivatives far more readily than phosphothreonyl ones. This opposite behaviour provides a criterion for discriminating between protein dephosphorylating activity due to authentic protein phosphatases as compared to nonspecific acid and/or alkaline phosphatases. In particular the phosphothreonyl peptides RRATPVA and RRREEETPEEEAA appear to be especially suited for detecting the activity of PP-2C and PP-2A, since they are hardly dephosphorylated by acid and alkaline phosphatases. Conversely, the phosphoseryl peptides SPEEEEE and RRASPVA can provide a sensitive evaluation of the majority of acid and alkaline phosphatases, while being refractory to protein phosphatases. | | 1653021
|