Ghrelin ameliorates hypoxia-induced pulmonary hypertension via phospho-GSK3{beta}{beta}-catenin signaling in neonatal rats. Xu YP, Zhu JJ, Cheng F, Jiang KW, Gu WZ, Shen Z, Wu YD, Liang L, Du LZ Journal of molecular endocrinology
47
33-43. Print 2011.
2011
요약 표시
Effective treatment and/or prevention strategies for neonatal persistent pulmonary hypertension of the newborn (PPHN) have been an important topic in neonatal medicine. However, mechanisms of impaired pulmonary vascular structure in hypoxia-induced PPHN are poorly understood and consequently limit the development of effective treatment. In this study, we aimed to explore the molecular signaling cascades in the lungs of a PPHN animal model and used primary cultured rat pulmonary microvascular endothelial cells to analyze the physiological benefits of ghrelin during the pathogenesis of PPHN. Randomly selected newborn rats were exposed to hypoxia (10-12%) or room air and received daily s.c. injections of ghrelin (150 μg/kg) or saline. After 2 weeks, pulmonary hemodynamics and morphometry were assessed in the rats. Compared with the control, hypoxia increased pulmonary arterial pressure, right ventricle (RV) hypertrophy, and arteriolar wall thickness. Ghrelin treatment reduced both the magnitude of PH and the RV/(left ventricle+septum (Sep)) weight ratio. Ghrelin protected neonatal rats from hypoxia-induced PH via the upregulation of phosphorylation of glycogen synthase kinase 3β (p-GSK3β)/β-catenin signaling and associated with β-catenin translocation to the nucleus in the presence of growth hormone secretagogue receptor-1a. Our findings suggest that s.c. administration of ghrelin improved PH and attenuated pulmonary vascular remodeling after PPHN. These beneficial effects may be mediated by the regulation of p-GSK3β/β-catenin expression. We propose ghrelin as a novel potential therapeutic agent for PPHN. | 21504941
|
Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB Endocrinology
151
4745-55. Epub 2010 Sep 8.
2010
요약 표시
Circulating ghrelin is decreased in obesity, and peripheral ghrelin does not induce food intake in obese mice. We investigated whether ghrelin resistance was a centrally mediated phenomenon involving dysregulated neuropeptide Y (NPY) and agouti-related peptide (AgRP) circuits. We show that diet-induced obesity (DIO) (12 wk) suppresses the neuroendocrine ghrelin system by decreasing acylated and total plasma ghrelin, decreasing ghrelin and Goat mRNA in the stomach, and decreasing expression of hypothalamic GHSR. Peripheral (ip) or central (intracerebroventricular) ghrelin injection was able to induce food intake and arcuate nucleus Fos immunoreactivity in chow-fed but not high-fat diet-fed mice. DIO decreased expression of Npy and Agrp mRNA, and central ghrelin was unable to promote expression of these genes. Ghrelin did not induce AgRP or NPY secretion in hypothalamic explants from DIO mice. Injection of NPY intracerebroventricularly increased food intake in both chow-fed and high-fat diet-fed mice, indicating that downstream NPY/AgRP neural targets are intact and that defective NPY/AgRP function is a primary cause of ghrelin resistance. Ghrelin resistance in DIO is not confined to the NPY/AgRP neurons, because ghrelin did not stimulate growth hormone secretion in DIO mice. Collectively, our data suggests that DIO causes ghrelin resistance by reducing NPY/AgRP responsiveness to plasma ghrelin and suppressing the neuroendocrine ghrelin axis to limit further food intake. Ghrelin has a number of functions in the brain aside from appetite control, including cognitive function, mood regulation, and protecting against neurodegenerative diseases. Thus, central ghrelin resistance may potentiate obesity-related cognitive decline, and restoring ghrelin sensitivity may provide therapeutic outcomes for maintaining healthy aging. | 20826561
|