Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Tamayo, AG; Duong, HA; Robles, MS; Mann, M; Weitz, CJ Nature structural & molecular biology
22
759-66
2015
요약 표시
Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock-Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock-Bmal1 activity. We found that mouse Clock-Bmal1 recruits the Ddb1-Cullin-4 ubiquitin ligase to Per (Per1 and Per2), Cry (Cry1 and Cry2) and other circadian target genes. Histone H2B monoubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1 and Cullin-4a. Depletion of Ddb1-Cullin-4a or an independent decrease in H2B monoubiquitination caused defective circadian feedback and decreased the association of the Per complex with DNA-bound Clock-Bmal1. Clock-Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback. | | | 26323038
|
LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Ito, A; Hong, C; Rong, X; Zhu, X; Tarling, EJ; Hedde, PN; Gratton, E; Parks, J; Tontonoz, P eLife
4
e08009
2015
요약 표시
The liver X receptors (LXRs) are transcriptional regulators of lipid homeostasis that also have potent anti-inflammatory effects. The molecular basis for their anti-inflammatory effects is incompletely understood, but has been proposed to involve the indirect tethering of LXRs to inflammatory gene promoters. Here we demonstrate that the ability of LXRs to repress inflammatory gene expression in cells and mice derives primarily from their ability to regulate lipid metabolism through transcriptional activation and can occur in the absence of SUMOylation. Moreover, we identify the putative lipid transporter Abca1 as a critical mediator of LXR's anti-inflammatory effects. Activation of LXR inhibits signaling from TLRs 2, 4 and 9 to their downstream NF-κB and MAPK effectors through Abca1-dependent changes in membrane lipid organization that disrupt the recruitment of MyD88 and TRAF6. These data suggest that a common mechanism-direct transcriptional activation-underlies the dual biological functions of LXRs in metabolism and inflammation. | | | 26173179
|
Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1. Bazot, Q; Deschamps, T; Tafforeau, L; Siouda, M; Leblanc, P; Harth-Hertle, ML; Rabourdin-Combe, C; Lotteau, V; Kempkes, B; Tommasino, M; Gruffat, H; Manet, E Nucleic acids research
42
9700-16
2014
요약 표시
The Epstein-Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1. | | | 25092922
|
Temporal regulation of nuclear factor one occupancy by calcineurin/NFAT governs a voltage-sensitive developmental switch in late maturing neurons. Ding, B; Wang, W; Selvakumar, T; Xi, HS; Zhu, H; Chow, CW; Horton, JD; Gronostajski, RM; Kilpatrick, DL The Journal of neuroscience : the official journal of the Society for Neuroscience
33
2860-72
2013
요약 표시
Dendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs. Chromatin immunoprecipitation analysis revealed that a central feature of this program was temporally regulated NFI occupancy of late-expressed gene promoters. Developing CGNs undergo a hyperpolarizing shift in membrane potential, and depolarization inhibits their dendritic and synaptic maturation via activation of calcineurin (CaN) (Okazawa et al., 2009). Maintaining immature CGNs in a depolarized state blocked NFI temporal occupancy of late-expressed genes and the NFI switch program via activation of the CaN/nuclear factor of activated T-cells, cytoplasmic (NFATc) pathway and promotion of late-gene occupancy by NFATc4, and these mechanisms inhibited dendritogenesis. Conversely, inhibition of the CaN/NFATc pathway in CGNs maturing under physiological nondepolarizing conditions upregulated the NFI switch program, NFI temporal occupancy, and dendrite formation. NFATc4 occupied the promoters of late-expressed NFI program genes in immature mouse cerebellum, and its binding was temporally downregulated with development. Further, NFI temporal binding and switch gene expression were upregulated in the developing cerebellum of Nfatc4 (-/-) mice. These findings define a novel NFI switch and temporal occupancy program that forms a critical link between membrane potential/CaN and dendritic maturation in CGNs. CaN inhibits the program and NFI occupancy in immature CGNs by promoting NFATc4 binding to late-expressed genes. As maturing CGNs become more hyperpolarized, NFATc4 binding declines leading to onset of NFI temporal binding and the NFI switch program. | | | 23407945
|
Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Murata, T; Sano, T; Sasabe, M; Nonaka, S; Higashiyama, T; Hasezawa, S; Machida, Y; Hasebe, M Nature communications
4
1967
2013
요약 표시
In land plants, the cell plate partitions the daughter cells at cytokinesis. The cell plate initially forms between daughter nuclei and expands centrifugally until reaching the plasma membrane. The centrifugal development of the cell plate is driven by the centrifugal expansion of the phragmoplast microtubule array, but the molecular mechanism underlying this expansion is unknown. Here, we show that the phragmoplast array comprises stable microtubule bundles and dynamic microtubules. We find that the dynamic microtubules are nucleated by γ-tubulin on stable bundles. The dynamic microtubules elongate at the plus ends and form new bundles preferentially at the leading edge of the phragmoplast. At the same time, they are moved away from the cell plate, maintaining a restricted distribution of minus ends. We propose that cycles of attachment of γ-tubulin complexes onto the microtubule bundles, microtubule nucleation and bundling, accompanied by minus-end-directed motility, drive the centrifugal development of the phragmoplast. | | | 23770826
|
The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. Fowler, SL; Akins, M; Zhou, H; Figeys, D; Bennett, SA Journal of proteome research
12
2597-610
2013
요약 표시
Connexins are the structural subunits of gap junctions and act as protein platforms for signaling complexes. Little is known about tissue-specific connexin signaling nexuses, given significant challenges associated with affinity-purifying endogenous channel complexes to the level required for interaction analyses. Here, we used multiple subcellular fractionation techniques to isolate connexin32-enriched membrane microdomains from murine liver. We show, for the first time, that connexin32 localizes to both the plasma membrane and inner mitochondrial membrane of hepatocytes. Using a combination of immunoprecipitation-high throughput mass spectrometry, reciprocal co-IP, and subcellular fractionation methodologies, we report a novel interactome validated using null mutant controls. Eighteen connexin32 interacting proteins were identified. The majority represent resident mitochondrial proteins, a minority represent plasma membrane, endoplasmic reticulum, or cytoplasmic partners. In particular, connexin32 interacts with connexin26 and the mitochondrial protein, sideroflexin-1, at the plasma membrane. Connexin32 interaction enhances connexin26 stability. Converging bioinformatic, biochemical, and confocal analyses support a role for connexin32 in transiently tethering mitochondria to connexin32-enriched plasma membrane microdomains through interaction with proteins in the outer mitochondrial membrane, including sideroflexin-1. Complex formation increases the pool of sideroflexin-1 that is present at the plasma membrane. Together, these data identify a novel plasma membrane/mitochondrial signaling nexus in the connexin32 interactome. | | | 23590695
|
Evidence that Igf2 down-regulation in postnatal tissues and up-regulation in malignancies is driven by transcription factor E2f3. Lui, JC; Baron, J Proceedings of the National Academy of Sciences of the United States of America
110
6181-6
2013
요약 표시
Insulin-like growth factor 2 (IGF2) is an important fetal growth factor. Its expression is dramatically down-regulated in multiple organs after birth but is frequently up-regulated in cancers. The mechanisms that drive down-regulation of IGF2 in postnatal tissues or the up-regulation in malignancy are unclear. We found evidence that E2F transcription factor 3 (E2F3) drives these changes in expression. E2f3 mRNA expression, protein expression, and binding to the Igf2 promoter all decreased with age postnatally in multiple mouse organs. In late juvenile hepatocytes, restoration of high E2f3 expression restored high Igf2 expression, indicating a causal relationship, but this induction did not occur in fetal hepatocytes, which already have high E2f3 and Igf2 expression. Transient expression of E2f3 in both HEK293 cells and in late juvenile hepatocytes were able to activate reporter constructs containing the mouse Igf2 promoter P2, which includes consensus E2F-binding sites. In humans, microarray data revealed declines in E2F3 and IGF2 expression with age similar to the mouse. In addition, E2F3-overexpressing human prostate and bladder cancers showed increased IGF2 expression, and levels of E2F3 and IGF2 mRNA in these cancers were positively correlated. Taken together, the findings suggest that down-regulation of E2f3 with age helps drive the dramatic decline in Igf2 expression in postnatal organs, and E2F3 overexpression in human cancers induces IGF2 overexpression. | | | 23530192
|
mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Mitchell, L; Huard, S; Cotrut, M; Pourhanifeh-Lemeri, R; Steunou, AL; Hamza, A; Lambert, JP; Zhou, H; Ning, Z; Basu, A; Côté, J; Figeys, DA; Baetz, K Proceedings of the National Academy of Sciences of the United States of America
110
E1641-50
2013
요약 표시
Recent global proteomic and genomic studies have determined that lysine acetylation is a highly abundant posttranslational modification. The next challenge is connecting lysine acetyltransferases (KATs) to their cellular targets. We hypothesize that proteins that physically interact with KATs may not only predict the cellular function of the KATs but may be acetylation targets. We have developed a mass spectrometry-based method that generates a KAT protein interaction network from which we simultaneously identify both in vivo acetylation sites and in vitro acetylation sites. This modified chromatin-immunopurification coupled to an in vitro KAT assay with mass spectrometry (mChIP-KAT-MS) was applied to the Saccharomyces cerevisiae KAT nucleosome acetyltransferase of histone H4 (NuA4). Using mChIP-KAT-MS, we define the NuA4 interactome and in vitro-enriched acetylome, identifying over 70 previously undescribed physical interaction partners for the complex and over 150 acetyl lysine residues, of which 108 are NuA4-specific in vitro sites. Through this method we determine NuA4 acetylation of its own subunit Epl1 is a means of self-regulation and identify a unique link between NuA4 and the spindle pole body. Our work demonstrates that this methodology may serve as a valuable tool in connecting KATs with their cellular targets. | | | 23572591
|
An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch. Sun, C; Zhang, L; Chen, G Molecular brain
6
23
2013
요약 표시
GABAA receptors are ligand-gated Cl- channels, and the intracellular Cl- concentration governs whether GABA function is excitatory or inhibitory. During early brain development, GABA undergoes functional switch from excitation to inhibition: GABA depolarizes immature neurons but hyperpolarizes mature neurons due to a developmental decrease of intracellular Cl- concentration. This GABA functional switch is mainly mediated by the up-regulation of KCC2, a potassium-chloride cotransporter that pumps Cl- outside neurons. However, the upstream factor that regulates KCC2 expression is unclear.We report here that KCC2 is unexpectedly regulated by neuroligin-2 (NL2), a cell adhesion molecule specifically localized at GABAergic synapses. The expression of NL2 precedes that of KCC2 in early postnatal development. Upon knockdown of NL2, the expression level of KCC2 is significantly decreased, and GABA functional switch is significantly delayed during early development. Overexpression of shRNA-proof NL2 rescues both KCC2 reduction and delayed GABA functional switch induced by NL2 shRNAs. Moreover, NL2 appears to be required to maintain GABA inhibitory function even in mature neurons, because knockdown NL2 reverses GABA action to excitatory. Gramicidin-perforated patch clamp recordings confirm that NL2 directly regulates the GABA equilibrium potential. We further demonstrate that knockdown of NL2 decreases dendritic spines through down-regulating KCC2.Our data suggest that in addition to its conventional role as a cell adhesion molecule to regulate GABAergic synaptogenesis, NL2 also regulates KCC2 to modulate GABA functional switch and even glutamatergic synapses. Therefore, NL2 may serve as a master regulator in balancing excitation and inhibition in the brain. | | | 23663753
|
LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Lee, YT; de Vasconcellos, JF; Yuan, J; Byrnes, C; Noh, SJ; Meier, ER; Kim, KS; Rabel, A; Kaushal, M; Muljo, SA; Miller, JL Blood
122
1034-41
2013
요약 표시
Reactivation of fetal hemoglobin (HbF) holds therapeutic potential for sickle cell disease and β-thalassemias. In human erythroid cells and hematopoietic organs, LIN28B and its targeted let-7 microRNA family, demonstrate regulated expression during the fetal-to-adult developmental transition. To explore the effects of LIN28B in human erythroid cell development, lentiviral transduction was used to knockdown LIN28B expression in erythroblasts cultured from human umbilical cord CD34+ cells. The subsequent reduction in LIN28B expression caused increased expression of let-7 and significantly reduced HbF expression. Conversely, LIN28B overexpression in cultured adult erythroblasts reduced the expression of let-7 and significantly increased HbF expression. Cellular maturation was maintained including enucleation. LIN28B expression in adult erythroblasts increased the expression of γ-globin, and the HbF content of the cells rose to levels greater than 30% of their hemoglobin. Expression of carbonic anhydrase I, glucosaminyl (N-acetyl) transferase 2, and miR-96 (three additional genes marking the transition from fetal-to-adult erythropoiesis) were reduced by LIN28B expression. The transcription factor BCL11A, a well-characterized repressor of γ-globin expression, was significantly down-regulated. Independent of LIN28B, experimental suppression of let-7 also reduced BCL11A expression and significantly increased HbF expression. LIN28B expression regulates HbF levels and causes adult human erythroblasts to differentiate with a more fetal-like phenotype. | | | 23798711
|