A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation. Hatano, K; Kumar, B; Zhang, Y; Coulter, JB; Hedayati, M; Mears, B; Ni, X; Kudrolli, TA; Chowdhury, WH; Rodriguez, R; DeWeese, TL; Lupold, SE Nucleic acids research
43
4075-86
2015
요약 표시
MicroRNAs (miRNAs) have been implicated in DNA repair pathways through transcriptional responses to DNA damaging agents or through predicted miRNA regulation of DNA repair genes. We hypothesized that additional DNA damage regulating miRNAs could be identified by screening a library of 810 miRNA mimetics for the ability to alter cellular sensitivity to ionizing radiation (IR). A prostate cancer Metridia luciferase cell model was applied to examine the effects of individual miRNAs on IR sensitivity. A large percentage of miRNA mimetics were found to increase cellular sensitivity to IR, while a smaller percentage were protective. Two of the most potent IR sensitizing miRNAs, miR-890 and miR-744-3p, significantly delayed IR induced DNA damage repair. Both miRNAs inhibited the expression of multiple components of DNA damage response and DNA repair. miR-890 directly targeted MAD2L2, as well as WEE1 and XPC, where miR-744-3p directly targeted RAD23B. Knock-down of individual miR-890 targets by siRNA was not sufficient to ablate miR-890 radiosensitization, signifying that miR-890 functions by regulating multiple DNA repair genes. Intratumoral delivery of miR-890 mimetics prior to IR therapy significantly enhanced IR therapeutic efficacy. These results reveal novel miRNA regulation of DNA repair and identify miR-890 as a potent IR sensitizing agent. | | | 25845598
 |
DNA-PK-A candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival. Cornell, L; Munck, JM; Alsinet, C; Villanueva, A; Ogle, L; Willoughby, CE; Televantou, D; Thomas, HD; Jackson, J; Burt, AD; Newell, D; Rose, J; Manas, DM; Shapiro, GI; Curtin, NJ; Reeves, HL Clinical cancer research : an official journal of the American Association for Cancer Research
21
925-33
2015
요약 표시
Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) difficult to treat with traditional cytotoxic therapies, whereas newer targeted approaches offer only modest survival benefit. We focused on DNA-dependent protein kinase, DNA-PKcs, encoded by PRKDC and central to DNA damage repair by nonhomologous end joining. Our aim was to explore its roles in hepatocarcinogenesis and as a novel therapeutic candidate.PRKDC was characterized in liver tissues from of 132 patients [normal liver (n = 10), cirrhotic liver (n = 13), dysplastic nodules (n = 18), HCC (n = 91)] using Affymetrix U133 Plus 2.0 and 500 K Human Mapping SNP arrays (cohort 1). In addition, we studied a case series of 45 patients with HCC undergoing diagnostic biopsy (cohort 2). Histological grading, response to treatment, and survival were correlated with DNA-PKcs quantified immunohistochemically. Parallel in vitro studies determined the impact of DNA-PK on DNA repair and response to cytotoxic therapy.Increased PRKDC expression in HCC was associated with amplification of its genetic locus in cohort 1. In cohort 2, elevated DNA-PKcs identified patients with treatment-resistant HCC, progressing at a median of 4.5 months compared with 16.9 months, whereas elevation of activated pDNA-PK independently predicted poorer survival. DNA-PKcs was high in HCC cell lines, where its inhibition with NU7441 potentiated irradiation and doxorubicin-induced cytotoxicity, whereas the combination suppressed HCC growth in vitro and in vivo.These data identify PRKDC/DNA-PKcs as a candidate driver of hepatocarcinogenesis, whose biopsy characterization at diagnosis may impact stratification of current therapies, and whose specific future targeting may overcome resistance. | | | 25480831
 |
Reversible cell cycle inhibition and premature aging features imposed by conditional expression of p16Ink4a. Boquoi, A; Arora, S; Chen, T; Litwin, S; Koh, J; Enders, GH Aging cell
14
139-47
2015
요약 표시
The cyclin-dependent kinase (Cdk) inhibitor p16(Ink4a) (p16) is a canonical mediator of cellular senescence and accumulates in aging tissues, where it constrains proliferation of some progenitor cells. However, whether p16 induction in tissues is sufficient to inhibit cell proliferation, mediate senescence, and/or impose aging features has remained unclear. To address these issues, we generated transgenic mice that permit conditional p16 expression. Broad induction at weaning inhibited proliferation of intestinal transit-amplifying and Lgr5+ stem cells and rapidly imposed features of aging, including hair loss, skin wrinkling, reduced body weight and subcutaneous fat, an increased myeloid fraction in peripheral blood, poor dentition, and cataracts. Aging features were observed with multiple combinations of p16 transgenes and transactivators and were largely abrogated by a germline Cdk4 R24C mutation, confirming that they reflect Cdk inhibition. Senescence markers were not found, and de-induction of p16, even after weeks of sustained expression, allowed rapid recovery of intestinal cell proliferation and reversal of aging features in most mice. These results suggest that p16-mediated inhibition of Cdk activity is sufficient to inhibit cell proliferation and impose aging features in somatic tissues of mammals and that at least some of these aging features are reversible. | | | 25481981
 |
DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair. Abdou, I; Poirier, GG; Hendzel, MJ; Weinfeld, M Nucleic acids research
43
875-92
2015
요약 표시
In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme's SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3. | | | 25539916
 |
The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Diner, BA; Li, T; Greco, TM; Crow, MS; Fuesler, JA; Wang, J; Cristea, IM Molecular systems biology
11
787
2015
요약 표시
The human PYHIN proteins, AIM2, IFI16, IFIX, and MNDA, are critical regulators of immune response, transcription, apoptosis, and cell cycle. However, their protein interactions and underlying mechanisms remain largely uncharacterized. Here, we provide the interaction network for all PYHIN proteins and define a function in sensing of viral DNA for the previously uncharacterized IFIX protein. By designing a cell-based inducible system and integrating microscopy, immunoaffinity capture, quantitative mass spectrometry, and bioinformatics, we identify over 300 PYHIN interactions reflective of diverse functions, including DNA damage response, transcription regulation, intracellular signaling, and antiviral response. In view of the IFIX interaction with antiviral factors, including nuclear PML bodies, we further characterize IFIX and demonstrate its function in restricting herpesvirus replication. We discover that IFIX detects viral DNA in both the nucleus and cytoplasm, binding foreign DNA via its HIN domain in a sequence-non-specific manner. Furthermore, IFIX contributes to the induction of interferon response. Our results highlight the value of integrative proteomics in deducing protein function and establish IFIX as an antiviral DNA sensor important for mounting immune responses. | | | 25665578
 |
SWI/SNF complexes are required for full activation of the DNA-damage response. Smith-Roe, SL; Nakamura, J; Holley, D; Chastain, PD; Rosson, GB; Simpson, DA; Ridpath, JR; Kaufman, DG; Kaufmann, WK; Bultman, SJ Oncotarget
6
732-45
2015
요약 표시
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function. | Western Blotting | | 25544751
 |
In vitro matured oocytes are more susceptible than in vivo matured oocytes to mock ICSI induced functional and genetic changes. Uppangala, S; Dhiman, S; Salian, SR; Singh, VJ; Kalthur, G; Adiga, SK PloS one
10
e0119735
2015
요약 표시
Concerns regarding the safety of ICSI have been intensified recently due to increased risk of birth defects in ICSI born children. Although fertilization rate is significantly higher in ICSI cycles, studies have failed to demonstrate the benefits of ICSI in improving the pregnancy rate. Poor technical skill, and suboptimal in vitro conditions may account for the ICSI results however, there is no report on the effects of oocyte manipulations on the ICSI outcome.The present study elucidates the influence of mock ICSI on the functional and genetic integrity of the mouse oocytes.Reactive Oxygen Species (ROS) level, mitochondrial status, and phosphorylation of H2AX were assessed in the in vivo matured and IVM oocytes subjected to mock ICSI.A significant increase in ROS level was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (Pless than 0.05-0.001) whereas unique mitochondrial distribution pattern was found only in IVM oocytes (Pless than 0.01-0.001). Importantly, differential H2AX phosphorylation was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P less than 0.001).The data from this study suggests that mock ICSI can alter genetic and functional integrity in oocytes and IVM oocytes are more vulnerable to mock ICSI induced changes. | | | 25786120
 |
Consequence of the tumor-associated conversion to cyclin D1b. Augello, MA; Berman-Booty, LD; Carr, R; Yoshida, A; Dean, JL; Schiewer, MJ; Feng, FY; Tomlins, SA; Gao, E; Koch, WJ; Benovic, JL; Diehl, JA; Knudsen, KE EMBO molecular medicine
7
628-47
2015
요약 표시
Clinical evidence suggests that cyclin D1b, a variant of cyclin D1, is associated with tumor progression and poor outcome. However, the underlying molecular basis was unknown. Here, novel models were created to generate a genetic switch from cyclin D1 to cyclin D1b. Extensive analyses uncovered overlapping but non-redundant functions of cyclin D1b compared to cyclin D1 on developmental phenotypes, and illustrated the importance of the transcriptional regulatory functions of cyclin D1b in vivo. Data obtained identify cyclin D1b as an oncogene, wherein cyclin D1b expression under the endogenous promoter induced cellular transformation and further cooperated with known oncogenes to promote tumor growth in vivo. Further molecular interrogation uncovered unexpected links between cyclin D1b and the DNA damage/PARP1 regulatory networks, which could be exploited to suppress cyclin D1b-driven tumors. Collectively, these data are the first to define the consequence of cyclin D1b expression on normal cellular function, present evidence for cyclin D1b as an oncogene, and provide pre-clinical evidence of effective methods to thwart growth of cells dependent upon this oncogenic variant. | | | 25787974
 |
MK3 modulation affects BMI1-dependent and independent cell cycle check-points. Prickaerts, P; Niessen, HE; Dahlmans, VE; Spaapen, F; Salvaing, J; Vanhove, J; Geijselaers, C; Bartels, SJ; Partouns, I; Neumann, D; Speel, EJ; Takihara, Y; Wouters, BG; Voncken, JW PloS one
10
e0118840
2015
요약 표시
Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1) proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent. | | | 25853770
 |
A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. van Sluis, M; McStay, B Genes & development
29
1151-63
2015
요약 표시
DNA double-strand breaks (DSBs) are repaired by two main pathways: nonhomologous end-joining and homologous recombination (HR). Repair pathway choice is thought to be determined by cell cycle timing and chromatin context. Nucleoli, prominent nuclear subdomains and sites of ribosome biogenesis, form around nucleolar organizer regions (NORs) that contain rDNA arrays located on human acrocentric chromosome p-arms. Actively transcribed rDNA repeats are positioned within the interior of the nucleolus, whereas sequences proximal and distal to NORs are packaged as heterochromatin located at the nucleolar periphery. NORs provide an opportunity to investigate the DSB response at highly transcribed, repetitive, and essential loci. Targeted introduction of DSBs into rDNA, but not abutting sequences, results in ATM-dependent inhibition of their transcription by RNA polymerase I. This is coupled with movement of rDNA from the nucleolar interior to anchoring points at the periphery. Reorganization renders rDNA accessible to repair factors normally excluded from nucleoli. Importantly, DSBs within rDNA recruit the HR machinery throughout the cell cycle. Additionally, unscheduled DNA synthesis, consistent with HR at damaged NORs, can be observed in G1 cells. These results suggest that HR can be templated in cis and suggest a role for chromosomal context in the maintenance of NOR genomic stability. | | | 26019174
 |