JMJD6 regulates ERα methylation on arginine. Poulard, C; Rambaud, J; Hussein, N; Corbo, L; Le Romancer, M PloS one
9
e87982
2014
요약 표시
ERα functions are tightly controlled by numerous post-translational modifications including arginine methylation, which is required to mediate the extranuclear functions of the receptor. We report that upon oestrogenic stimulation, JMJD6, the only arginine demethylase described so far, interacts with and regulates methylated ERα (metERα) function. Moreover, by combining the silencing of JMJD6 with demethylation assays, we show that metERα is a new substrate for JMJD6. We propose that the demethylase activity of JMJD6 is a decisive regulator of the rapid physiological responses to oestrogen. | | 24498420
|
5-Hydroxymethylcytosine Plays a Critical Role in Glioblastomagenesis by Recruiting the CHTOP-Methylosome Complex. Takai, H; Masuda, K; Sato, T; Sakaguchi, Y; Suzuki, T; Suzuki, T; Koyama-Nasu, R; Nasu-Nishimura, Y; Katou, Y; Ogawa, H; Morishita, Y; Kozuka-Hata, H; Oyama, M; Todo, T; Ino, Y; Mukasa, A; Saito, N; Toyoshima, C; Shirahige, K; Akiyama, T Cell reports
9
48-60
2014
요약 표시
The development of cancer is driven not only by genetic mutations but also by epigenetic alterations. Here, we show that TET1-mediated production of 5-hydroxymethylcytosine (5hmC) is required for the tumorigenicity of glioblastoma cells. Furthermore, we demonstrate that chromatin target of PRMT1 (CHTOP) binds to 5hmC. We found that CHTOP is associated with an arginine methyltransferase complex, termed the methylosome, and that this promotes the PRMT1-mediated methylation of arginine 3 of histone H4 (H4R3) in genes involved in glioblastomagenesis, including EGFR, AKT3, CDK6, CCND2, and BRAF. Moreover, we found that CHTOP and PRMT1 are essential for the expression of these genes and that CHTOP is required for the tumorigenicity of glioblastoma cells. These results suggest that 5hmC plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex to selective sites on the chromosome, where it methylates H4R3 and activates the transcription of cancer-related genes. | | 25284789
|
Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. Kanade, SR; Eckert, RL The Journal of biological chemistry
287
7313-23
2012
요약 표시
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation. | | 22199349
|
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Deng, X; Gu, L; Liu, C; Lu, T; Lu, F; Lu, Z; Cui, P; Pei, Y; Wang, B; Hu, S; Cao, X Proceedings of the National Academy of Sciences of the United States of America
107
19114-9
2010
요약 표시
Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator flowering locus KH domain (FLK) in atprmt5 mutants reduce its functional transcript and protein levels, resulting in the up-regulation of a flowering repressor flowering locus C (FLC) and consequently late flowering. Taken together, our findings uncover an essential role for arginine methylation in proper pre-mRNA splicing that impacts diverse developmental processes. | Western Blotting | 20956294
|
Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. Kowenz-Leutz, E; Pless, O; Dittmar, G; Knoblich, M; Leutz, A The EMBO journal
29
1105-15
2010
요약 표시
Cellular signalling cascades regulate the activity of transcription factors that convert extracellular information into gene regulation. C/EBPbeta is a ras/MAPkinase signal-sensitive transcription factor that regulates genes involved in metabolism, proliferation, differentiation, immunity, senescence, and tumourigenesis. The protein arginine methyltransferase 4 PRMT4/CARM1 interacts with C/EBPbeta and dimethylates a conserved arginine residue (R3) in the C/EBPbeta N-terminal transactivation domain, as identified by mass spectrometry of cell-derived C/EBPbeta. Phosphorylation of the C/EBPbeta regulatory domain by ras/MAPkinase signalling abrogates the interaction between C/EBPbeta and PRMT4/CARM1. Differential proteomic screening, protein interaction studies, and mutational analysis revealed that methylation of R3 constraines interaction with SWI/SNF and Mediator complexes. Mutation of the R3 methylation site alters endogenous myeloid gene expression and adipogenic differentiation. Thus, phosphorylation of the transcription factor C/EBPbeta couples ras signalling to arginine methylation and regulates the interaction of C/EBPbeta with epigenetic gene regulatory protein complexes during cell differentiation. | Immunoprecipitation | 20111005
|
Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Vagin, VV; Wohlschlegel, J; Qu, J; Jonsson, Z; Huang, X; Chuma, S; Girard, A; Sachidanandam, R; Hannon, GJ; Aravin, AA Genes & development
23
1749-62
2009
요약 표시
In germ cells, Piwi proteins interact with a specific class of small noncoding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. Basic models describe the overall operation of piRNA pathways. However, the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, and the precise molecular consequences of conserved localization to germline structures, call nuage, remains poorly understood. We purified the three murine Piwi family proteins, MILI, MIWI, and MIWI2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with PRMT5/WDR77, an enzyme that dimethylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their N termini. These modifications are essential to direct complex formation with specific members of the Tudor protein family. Recognition of methylarginine marks by Tudor proteins can drive the localization of Piwi proteins to cytoplasmic foci in an artificial setting, supporting a role for this interaction in Piwi localization to nuage, a characteristic that correlates with proper operation of the piRNA pathway and transposon silencing in multiple organisms. 기사 전문 | Immunoprecipitation | 19584108
|
A proteomic analysis of arginine methylated protein complexes Boisvert, F. M., et al Mol Cell Proteomics, 2:1319-30 (2003)
2003
| Immunoblotting (Western) | 14534352
|
Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. Boisvert, Francois-Michel, et al. J. Cell Biol., 159: 957-69 (2002)
2002
요약 표시
The nuclear structures that contain symmetrical dimethylated arginine (sDMA)-modified proteins and the role of this posttranslational modification is unknown. Here we report that the Cajal body is a major epitope in HeLa cells for an sDMA-specific antibody and that coilin is an sDMA-containing protein as analyzed by using the sDMA-specific antibody and matrix-assisted laser desorption ionization time of flight mass spectrometry. The methylation inhibitor 5'-deoxy-5'-methylthioadenosine reduces the levels of coilin methylation and causes the appearance of SMN-positive gems. In cells devoid of Cajal bodies, such as primary fibroblasts, sDMA-containing proteins concentrated in speckles. Cells from a patient with spinal muscular atrophy, containing low levels of the methyl-binding protein SMN, localized sDMA-containing proteins in the nucleoplasm as a discrete granular pattern. Splicing reactions are efficiently inhibited by using the sDMA-specific antibody or by using hypomethylated nuclear extracts, showing that active spliceosomes contain sDMA polypeptides and suggesting that arginine methylation is important for efficient pre-mRNA splicing. Our findings support a model in which arginine methylation is important for the localization of coilin and SMN in Cajal bodies. | | 12486110
|