Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts. Glushakova, LG; Judge, S; Cruz, A; Pourang, D; Mathews, CE; Stacpoole, PW Molecular genetics and metabolism
104
255-60
2011
요약 표시
The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. | 21846590
|
AMP-activated protein kinase response to contractions and treatment with the AMPK activator AICAR in young adult and old skeletal muscle. D M Thomson,J D Brown,N Fillmore,S K Ellsworth,D L Jacobs,W W Winder,C A Fick,S E Gordon The Journal of physiology
587
2009
요약 표시
One characteristic of ageing skeletal muscle is a decline in mitochondrial function. Activation of AMP-activated protein kinase (AMPK) occurs in response to an increased AMP/ATP ratio, which is one potential result of mitochondrial dysfunction. We have previously observed higher AMPK activity in old (O; 30 months) vs young adult (YA; 8 months) fast-twitch muscle in response to chronic overload. Here we tested the hypothesis that AMPK would also be hyperactivated in O vs YA fast-twitch extensor digitorum longus muscles from Fischer(344) x Brown Norway (FBN) rats (n = 8 per group) in response to high-frequency electrical stimulation of the sciatic nerve (HFES) or injection of AICAR, an activator of AMPK. Muscles were harvested immediately after HFES (10 sets of six 3-s contractions, 10 s rest between contractions, 1 min rest between sets) or 1 h after AICAR injection (1 mg (g body weight)(-1) subcutaneously). The phosphorylations of AMPKalpha and acetyl-CoA carboxylase (ACC2; a downstream AMPK target) were both greatly increased (P <or= 0.05) in response to HFES in O muscles, but were either unresponsive (AMPK alpha) or much less responsive (ACC) in YA muscles. AMPK alpha2 activity was also greatly elevated in response to HFES in O muscles (but not YA muscles) despite a lower total AMPK alpha2 protein content in O vs YA muscles. In contrast, AMPK alpha2 activity was equally responsive to AICAR treatment in both age groups. Since mitochondrial content and/or efficiency could potentially underlie AMPK hyperactivation, we measured levels of mitochondrial proteins as well as citrate synthase (CS) activity. While CS activity was increased by 25% in O vs YA muscles, uncoupling protein-3 (UCP-3) protein level was upregulated with age by 353%. Thus, AMPK hyperactivation in response to contractile activity in aged fast-twitch muscle may be the result of compromised cellular energetics and not necessarily due to an inherent defect in responsiveness of the AMPK molecule per se. 기사 전문 | 19273578
|
Changes in uncoupling protein-2 and -3 expression in aging rat skeletal muscle, liver, and heart. R Barazzoni, K S Nair, R Barazzoni, K S Nair American journal of physiology. Endocrinology and metabolism
280
E413-9
2001
요약 표시
Uncoupling protein (UCP)-2 and -3 mediate mitochondrial (mt) proton leak in vitro and are potential regulators of energy expenditure and ATP production. Aging is associated with alteration of tissue functions, suggesting impaired mtATP production. To determine whether age-related changes in UCP expression occur, we measured the transcript levels of UCP-2 and -3 in skeletal muscle, liver, and heart in 6- and 27-mo-old rats. UCP-2 transcripts were higher in old animals in the white (+100%) and red (+70%, both P 0.04) gastrocnemius muscle and in the liver (+300%, P 0.03), whereas they were comparable in the heart in both age groups. UCP-2 transcript levels correlated positively with mitochondrial-encoded cytochrome c oxidase transcripts normalized for mtDNA (P 0.01) and negatively with mtDNA copy number (P 0.001). UCP-3 transcripts were lower in the less oxidative white (-50%, P 0.04) and unchanged in the more oxidative red (-15%, P = 0.41) gastrocnemius muscle in old animals. Similar changes at protein level were confirmed by UCP-2 protein in aging liver (+300%, P 0.01) and UCP-2 (+85%, P 0.05) and UCP-3 (-30%, P = 0.4) protein in aging mixed gastrocnemius muscle. Aging is thus associated with tissue-specific changes of UCP-2 and -3 gene expression. Increased UCP-2 expression may limit ATP production and is related to mitochondrial gene expression in aging muscles and liver. Different age-related changes may reflect differential regulation of UCP-2 and -3 in skeletal muscle. The current data suggest a potential role of uncoupling proteins to alter energy production in aging tissues. | 11171595
|
Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Fleury, C, et al. Nat. Genet., 15: 269-72 (1997)
1997
요약 표시
A mitochondrial protein called uncoupling protein (UCP1) plays an important role in generating heat and burning calories by creating a pathway that allows dissipation of the proton electrochemical gradient across the inner mitochondrial membrane in brown adipose tissue, without coupling to any other energy-consuming process. This pathway has been implicated in the regulation of body temperature, body composition and glucose metabolism. However, UCP1-containing brown adipose tissue is unlikely to be involved in weight regulation in adult large-size animals and humans living in a thermoneutral environment (one where an animal does not have to increase oxygen consumption or energy expenditure to lose or gain heat to maintain body temperature), as there is little brown adipose tissue present. We now report the discovery of a gene that codes for a novel uncoupling protein, designated UCP2, which has 59% amino-acid identity to UCP1, and describe properties consistent with a role in diabetes and obesity. In comparison with UCP1, UCP2 has a greater effect on mitochondrial membrane potential when expressed in yeast. Compared to UCP1, the gene is widely expressed in adult human tissues, including tissues rich in macrophages, and it is upregulated in white fat in response to fat feeding. Finally, UCP2 maps to regions of human chromosome 11 and mouse chromosome 7 that have been linked to hyperinsulinaemia and obesity. Our findings suggest that UCP2 has a unique role in energy balance, body weight regulation and thermoregulation and their responses to inflammatory stimuli. | 9054939
|
Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Gimeno, R E, et al. Diabetes, 46: 900-6 (1997)
1997
요약 표시
We have identified a novel cDNA encoding a protein highly homologous to the mammalian brown fat uncoupling protein (UCP). Unlike the known UCP, which is expressed specifically in brown adipose tissue, the UCP homolog (UCPH) mRNA is expressed in a variety of tissues, with predominant expression in human white adipose tissue and skeletal muscle. In the white adipose tissue of ob/ob and db/db mice, the UCPH transcript is induced approximately fivefold relative to lean littermate controls. Expression of murine UCPH in yeast results in growth inhibition under conditions that require aerobic respiration, but does not affect growth under anaerobic conditions. Furthermore, UCPH expression in yeast causes a decrease in the mitochondrial membrane potential, as judged by staining with the potential-sensitive dye DiOC6. These observations suggest that UCPH, like UCP, uncouples oxidative phosphorylation. The possibility that the UCPH protein is an important mediator of human thermogenesis is discussed. | 9133562
|