Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. Koh, CM; Khattar, E; Leow, SC; Liu, CY; Muller, J; Ang, WX; Li, Y; Franzoso, G; Li, S; Guccione, E; Tergaonkar, V The Journal of clinical investigation
125
2109-22
2015
요약 표시
Constitutively active MYC and reactivated telomerase often coexist in cancers. While reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with cofactors, confers several growth advantages to cancer cells. It is known that the reactivation of TERT, the catalytic subunit of telomerase, is limiting for reconstituting telomerase activity in tumors. However, while reactivation of TERT has been functionally linked to the acquisition of several "hallmarks of cancer" in tumors, the molecular mechanisms by which this occurs and whether these mechanisms are distinct from the role of telomerase on telomeres is not clear. Here, we demonstrated that first-generation TERT-null mice, unlike Terc-null mice, show delayed onset of MYC-induced lymphomagenesis. We further determined that TERT is a regulator of MYC stability in cancer. TERT stabilized MYC levels on chromatin, contributing to either activation or repression of its target genes. TERT regulated MYC ubiquitination and proteasomal degradation, and this effect of TERT was independent of its reverse transcriptase activity and role in telomere elongation. Based on these data, we conclude that reactivation of TERT, a direct transcriptional MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis. | | 25893605
![25893605](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
A human artificial chromosome recapitulates the metabolism of native telomeres in mammalian cells. Wakai, M; Abe, S; Kazuki, Y; Oshimura, M; Ishikawa, F PloS one
9
e88530
2014
요약 표시
Telomeric and subtelomeric regions of human chromosomes largely consist of highly repetitive and redundant DNA sequences, resulting in a paucity of unique DNA sequences specific to individual telomeres. Accordingly, it is difficult to analyze telomere metabolism on a single-telomere basis. To circumvent this problem, we have exploited a human artificial chromosome (HAC#21) derived from human chromosome 21 (hChr21). HAC#21 was generated through truncation of the long arm of native hChr21 by the targeted telomere seeding technique. The newly established telomere of HAC#21 lacks canonical subtelomere structures but possesses unique sequences derived from the target vector backbone and the internal region of hChr21 used for telomere targeting, which enabled us to molecularly characterize the single HAC telomere. We established HeLa and NIH-3T3 sub-lines containing a single copy of HAC#21, where it was robustly maintained. The seeded telomere is associated with telomeric proteins over a length similar to that reported in native telomeres, and is faithfully replicated in mid-S phase in HeLa cells. We found that the seeded telomere on HAC#21 is transcribed from the newly juxtaposed site. The transcript, HAC-telRNA, shares several features with TERRA (telomeric repeat-containing RNA): it is a short-lived RNA polymerase II transcript, rarely contains a poly(A) tail, and associates with chromatin. Interestingly, HAC-telRNA undergoes splicing. These results suggest that transcription into TERRA is locally influenced by the subtelomeric context. Taken together, we have established human and mouse cell lines that will be useful for analyzing the behavior of a uniquely identifiable, functional telomere. | Western Blotting | 24558398
![24558398](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Ivanauskiene, K; Delbarre, E; McGhie, JD; Küntziger, T; Wong, LH; Collas, P Genome research
24
1584-94
2014
요약 표시
Histone variant H3.3 is deposited in chromatin at active sites, telomeres, and pericentric heterochromatin by distinct chaperones, but the mechanisms of regulation and coordination of chaperone-mediated H3.3 loading remain largely unknown. We show here that the chromatin-associated oncoprotein DEK regulates differential HIRA- and DAAX/ATRX-dependent distribution of H3.3 on chromosomes in somatic cells and embryonic stem cells. Live cell imaging studies show that nonnucleosomal H3.3 normally destined to PML nuclear bodies is re-routed to chromatin after depletion of DEK. This results in HIRA-dependent widespread chromatin deposition of H3.3 and H3.3 incorporation in the foci of heterochromatin in a process requiring the DAXX/ATRX complex. In embryonic stem cells, loss of DEK leads to displacement of PML bodies and ATRX from telomeres, redistribution of H3.3 from telomeres to chromosome arms and pericentric heterochromatin, induction of a fragile telomere phenotype, and telomere dysfunction. Our results indicate that DEK is required for proper loading of ATRX and H3.3 on telomeres and for telomeric chromatin architecture. We propose that DEK acts as a "gatekeeper" of chromatin, controlling chromatin integrity by restricting broad access to H3.3 by dedicated chaperones. Our results also suggest that telomere stability relies on mechanisms ensuring proper histone supply and routing. | | 25049225
![25049225](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Delbarre, E; Ivanauskiene, K; Küntziger, T; Collas, P Genome research
23
440-51
2013
요약 표시
Replication-independent chromatin deposition of histone variant H3.3 is mediated by several chaperones. We report a multistep targeting of newly synthesized epitope-tagged H3.3 to chromatin via PML bodies. H3.3 is recruited to PML bodies in a DAXX-dependent manner, a process facilitated by ASF1A. DAXX is required for enrichment of ATRX, but not ASF1A or HIRA, with PML. Nonetheless, the chaperones colocalize with H3.3 at PML bodies and are found in one or more complexes with PML. Both DAXX and PML are necessary to prevent accumulation of a soluble, nonincorporated pool of H3.3. H3.3 targeting to PML is enhanced with an (H3.3-H4)2 tetramerization mutant of H3.3, suggesting H3.3 recruitment to PML as an (H3.3-H4) dimer rather than as a tetramer. Our data support a model of DAXX-mediated recruitment of (H3.3-H4) dimers to PML bodies, which may function as triage centers for H3.3 deposition into chromatin by distinct chaperones. | | 23222847
![23222847](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
A new role for histone deacetylase 5 in the maintenance of long telomeres. Novo, Clara Lopes, et al. FASEB J., (2013)
2013
요약 표시
Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy. -Novo, C. L., Polese, C., Matheus, N., Decottignies, A., Londono-Vallejo, A., Castronovo, V., Mottet, D. A new role for histone deacetylase 5 in the maintenance of long telomeres. | | 23729589
![23729589](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
Cause-specific telomere factors deregulation in hepatocellular carcinoma. El Idrissi, M; Hervieu, V; Merle, P; Mortreux, F; Wattel, E Journal of experimental & clinical cancer research : CR
32
64
2013
요약 표시
Among the numerous genetic defects associated with hepatocarcinogenesis, telomere abnormalities appear to play a role both in tumor promotion and maintenance. Telomeres, the chromosome extremities, are protected by specific proteins, the shelterin complex and by additional factors. Besides telomerase dysregulation, expression changes of these telomere factors have been observed in cancers.Here, we tested the hypothesis that such dysregulation might occur in hepatocellular carcinoma (HCC) with specific patterns depending on the cause of HCC. We compared telomere length, telomerase activity (TA), hTERT and telomere genes expression using PCR and Western-blot analyses between non-cirrhotic liver, peritumoral cirrhotic tissue (40 samples) and cancerous tissue (40 samples) derived from 40 patients with HBV-, HCV-, or alcohol-related HCC.Alterations in TA, hTERT expression and telomere length between non-cirrhotic, cirrhotic, and tumor samples were not significantly influenced by the cause of HCC. In contrast, the expression pattern of hTR, shelterin, and non-shelterin telomere protective factors clearly distinguished the 3 causes of cirrhosis and HCC. For patients with HBV diseased liver, when compared with non-cirrhotic liver, the cirrhotic tissue underexpressed all shelterin and all but HMRE11A and RAD50 non-shelterin telomere factors. For HCV the expression level of POT1, RAP1, Ku80, and RAD50 was higher in cirrhotic than in non-cirrhotic liver samples without evidence for significant transcriptional change for the remaining genes. For alcohol-related liver diseases, the expression level of POT1, RAP1, TIN2, hMRE11A, hMRE11B, Ku70, Ku80, RAD50, TANK1, and PINX1 was higher in cirrhotic than in non-cirrhotic liver samples. For the 3 causes of HCC, there was no significant change in shelterin and non-shelterin gene expression between cirrhosis and HCC samples.These results validate our hypotheses and demonstrate that cirrhosis and HCC add-up numerous telomere dysfunctions including numerous cause-specific changes that appear to occur early during the course of the disease. | | 24020493
![24020493](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Fumagalli, M; Rossiello, F; Clerici, M; Barozzi, S; Cittaro, D; Kaplunov, JM; Bucci, G; Dobreva, M; Matti, V; Beausejour, CM; Herbig, U; Longhese, MP; d'Adda di Fagagna, F Nature cell biology
14
355-65
2012
요약 표시
The DNA-damage response (DDR) arrests cell-cycle progression until damage is removed. DNA-damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously induced persistent DDR markers is associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break next to a telomeric sequence resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a double-strand break induces persistent DNA damage and DDR. Linear, but not circular, telomeric DNA or scrambled DNA induces a prolonged checkpoint in normal cells. In terminally differentiated tissues of old primates, DDR markers accumulate at telomeres that are not critically short. We propose that linear genomes are not uniformly reparable and that telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence. | | 22426077
![22426077](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
A siRNA-based screen for genes involved in chromosome end protection. Lackner, DH; Durocher, D; Karlseder, J PloS one
6
e21407
2011
요약 표시
Telomeres are nucleoprotein complexes which protect the ends of linear chromosomes from detection as DNA damage and provide a sequence buffer against replication-associated shortening. In mammals, telomeres consist of repetitive DNA sequence (TTAGGG) and associated proteins. The telomeric core complex is called shelterin and is comprised of the proteins TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Excessive telomere shortening or de-protection of telomeres through the loss of shelterin subunits allows the detection of telomeres as DNA damage, which can be visualized as DNA damage protein foci at chromosome ends called TIF (Telomere Dysfunction-Induced Foci). We sought to exploit the TIF phenotype as marker for telomere dysfunction to identify novel genes involved in telomere protection by siRNA-mediated knock-down of a set of 386 candidates. Here we report the establishment, specificity and feasibility of such a screen and the results of the genes tested. Only one of the candidate genes showed a unique TIF phenotype comparable to the suppression of the main shelterin components TRF2 or TRF1 and that gene was identified as a TRF1-like pseudogene. We also identified a weak TIF phenotype for SKIIP (SNW1), a splicing factor and transcriptional co-activator. However, the knock-down of SKIIP also induced a general, not telomere-specific DNA damage response, which complicates conclusions about a telomeric role. In summary, this report is a technical demonstration of the feasibility of a cell-based screen for telomere deprotection with the potential of scaling it to a high-throughput approach. | Immunofluorescence | 21760879
![21760879](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
Human RAP1 inhibits non-homologous end joining at telomeres. Sarthy J, Bae NS, Scrafford J, Baumann P EMBO J
28
3390-9. Epub 2009 Sep 17.
2009
요약 표시
Telomeres, the nucleoprotein structures at the ends of linear chromosomes, promote genome stability by distinguishing chromosome termini from DNA double-strand breaks (DSBs). Cells possess two principal pathways for DSB repair: homologous recombination and non-homologous end joining (NHEJ). Several studies have implicated TRF2 in the protection of telomeres from NHEJ, but the underlying mechanism remains poorly understood. Here, we show that TRF2 inhibits NHEJ, in part, by recruiting human RAP1 to telomeres. Heterologous targeting of hRAP1 to telomeric DNA was sufficient to bypass the need for TRF2 in protecting telomeric DNA from NHEJ in vitro. On expanding these studies in cells, we find that recruitment of hRAP1 to telomeres prevents chromosome fusions caused by the loss of TRF2/hRAP1 from chromosome ends despite activation of a DNA damage response. These results provide the first evidence that hRAP1 inhibits NHEJ at mammalian telomeres and identify hRAP1 as a mediator of genome stability. 기사 전문 | | 19763083
![19763083](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |
Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. Ignacio Gonzalez-Suarez,Abena B Redwood,Stephanie M Perkins,Bart Vermolen,Daniel Lichtensztejin,David A Grotsky,Lucia Morgado-Palacin,Eric J Gapud,Barry P Sleckman,Teresa Sullivan,Julien Sage,Colin L Stewart,Sabine Mai,Susana Gonzalo The EMBO journal
28
2009
요약 표시
A-type lamins are intermediate filament proteins that provide a scaffold for protein complexes regulating nuclear structure and function. Mutations in the LMNA gene are linked to a variety of degenerative disorders termed laminopathies, whereas changes in the expression of lamins are associated with tumourigenesis. The molecular pathways affected by alterations of A-type lamins and how they contribute to disease are poorly understood. Here, we show that A-type lamins have a key role in the maintenance of telomere structure, length and function, and in the stabilization of 53BP1, a component of the DNA damage response (DDR) pathway. Loss of A-type lamins alters the nuclear distribution of telomeres and results in telomere shortening, defects in telomeric heterochromatin, and increased genomic instability. In addition, A-type lamins are necessary for the processing of dysfunctional telomeres by non-homologous end joining, putatively through stabilization of 53BP1. This study shows new functions for A-type lamins in the maintenance of genomic integrity, and suggests that alterations of telomere biology and defects in DDR contribute to the pathogenesis of lamin-related diseases. 기사 전문 | | 19629036
![19629036](/INTERSHOP/static/WFS/Merck-KR-Site/-/-/ko_KR/images/outbound-arrow.png) |