HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells. Chauveau, L; Puigdomenech, I; Ayinde, D; Roesch, F; Porrot, F; Bruni, D; Visseaux, B; Descamps, D; Schwartz, O Retrovirology
12
2
2015
요약 표시
Human Immunodeficiency Virus-type 2 (HIV-2) encodes Vpx that degrades SAMHD1, a cellular restriction factor active in non-dividing cells. HIV-2 replicates in lymphocytes but the susceptibility of monocyte-derived dendritic cells (MDDCs) to in vitro infection remains partly characterized.Here, we investigated HIV-2 replication in primary CD4+ T lymphocytes, both activated and non-activated, as well as in MDDCs. We focused on the requirement of Vpx for productive HIV-2 infection, using the reference HIV-2 ROD strain, the proviral clone GL-AN, as well as two primary HIV-2 isolates. All HIV-2 strains tested replicated in activated CD4+ T cells. Unstimulated CD4+ T cells were not productively infected by HIV-2, but viral replication was triggered upon lymphocyte activation in a Vpx-dependent manner. In contrast, MDDCs were poorly infected when exposed to HIV-2. HIV-2 particles did not potently fuse with MDDCs and did not lead to efficient viral DNA synthesis, even in the presence of Vpx. Moreover, the HIV-2 strains tested were not efficiently sensed by MDDCs, as evidenced by a lack of MxA induction upon viral exposure. Virion pseudotyping with VSV-G rescued fusion, productive infection and HIV-2 sensing by MDDCs.Vpx allows the non-productive infection of resting CD4+ T cells, but does not confer HIV-2 with the ability to efficiently infect MDDCs. In these cells, an entry defect prevents viral fusion and reverse transcription independently of SAMHD1. We propose that HIV-2, like HIV-1, does not productively infect MDDCs, possibly to avoid triggering an immune response mediated by these cells. | 25582927
|
Broadly neutralizing antibody VRC01 prevents HIV-1 transmission from plasmacytoid dendritic cells to CD4 T lymphocytes. Su, B; Lederle, A; Laumond, G; Ducloy, C; Schmidt, S; Decoville, T; Moog, C Journal of virology
88
10975-81
2014
요약 표시
Plasmacytoid dendritic cells (pDC) poorly replicate human immunodeficiency virus type 1 (HIV-1) but efficiently transfer HIV-1 to adjacent CD4 T lymphocytes. We found that coculture with T lymphocytes downregulates SAMHD1 expression, enhances HIV-1 replication, and increases pDC maturation and alpha interferon (IFN-α) secretion. HIV-1 transfer to T lymphocytes is inhibited by broadly neutralizing antibody VRC01 with efficiency similar to that of cell-free infection of T lymphocytes. Interestingly, prevention of HIV-1 transmission by VRC01 retains IFN-α secretion. These results emphasize the multiple functions of VRC01 in protection against HIV-1 acquisition. | 24965460
|
SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells. Puigdomènech, I; Casartelli, N; Porrot, F; Schwartz, O Journal of virology
87
2846-56
2013
요약 표시
SAMHD1 is a viral restriction factor expressed in dendritic cells and other cells, inhibiting infection by cell-free human immunodeficiency virus type 1 (HIV-1) particles. SAMHD1 depletes the intracellular pool of deoxynucleoside triphosphates, thus impairing HIV-1 reverse transcription and productive infection in noncycling cells. The Vpx protein from HIV-2 or simian immunodeficiency virus (SIVsm/SIVmac) antagonizes the effect of SAMHD1 by triggering its degradation. A large part of HIV-1 spread occurs through direct contacts between infected cells and bystander target cells. Here, we asked whether SAMHD1 impairs direct HIV-1 transmission from infected T lymphocytes to monocyte-derived dendritic cells (MDDCs). HIV-1-infected lymphocytes were cocultivated with MDDCs that have been pretreated or not with Vpx or with small interfering RNA against SAMHD1. We show that in the cocultures, SAMHD1 significantly inhibits productive cell-to-cell transmission to target MDDCs and prevents the type I interferon response and expression of the interferon-stimulated gene MxA. Therefore, SAMHD1, by controlling the sensitivity of MDDCs to HIV-1 infection during intercellular contacts, impacts their ability to sense the virus and to trigger an innate immune response. | 23269793
|