Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington's disease. Braubach, P; Orynbayev, M; Andronache, Z; Hering, T; Landwehrmeyer, GB; Lindenberg, KS; Melzer, W The Journal of general physiology
144
393-413
2014
요약 표시
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor-based Ca(2+) signaling, which is crucial for skeletal muscle excitation-contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca(2+) transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca(2+) inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca(2+) transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca(2+) removal from the myoplasm and Ca(2+) release flux from the sarcoplasmic reticulum were characterized using a Ca(2+) binding and transport model, which indicated a significant reduction in slow Ca(2+) removal activity and Ca(2+) release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca(2+) channel conductance. These results indicate profound changes of Ca(2+) turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD. | | 25348412
|
Diurnal and nutritional adjustments of intracellular Ca2+ release channels and Ca2+ ATPases associated with restricted feeding schedules in the rat liver. Báez-Ruiz, A; Cázares-Gómez, K; Vázquez-Martínez, O; Aguilar-Roblero, R; Díaz-Muñoz, M Journal of circadian rhythms
11
8
2013
요약 표시
Intracellular calcium is a biochemical messenger that regulates part of the metabolic adaptations in the daily fed-fast cycle. The aim of this study was to characterize the 24-h variations of the liver ryanodine and IP3 receptors (RyR and IP3R) as well as of the endoplasmic-reticulum and plasma-membrane Ca2+-ATPases (SERCA and PMCA) in daytime restricted feeding protocol.A biochemical and immunohistochemical approach was implemented in this study: specific ligand-binding for RyR and IP3R, enzymatic activity (SERCA and PMCA), and protein levels and zonational hepatic-distribution were determined by immunoblot and immunohistochemistry respectively under conditions of fasting, feeding, and temporal food-restriction.Binding assays and immunoblots for IP3R1 and 2 showed a peak at the light/dark transition in the ad-libitum (AL) group, whereas in the restricted-feeding (RF) group the peak shifted towards the food-access time. In the case of RyR binding experiments, both AL and RF groups showed a modest elevation during the dark period, with the RF rats exhibiting increased binding in response to feeding. The AL group showed 24-h rhythmicity in SERCA level; in contrast, RF group showed a pronounced amplitude elevation and a peak phase-shift during the light-period in SERCA level and activity. The activity of PMCA was constant along day in both groups; PMCA1 levels showed a 24-h rhythmicity in the RF rats (with a peak in the light period), meanwhile PMCA4 protein levels showed rhythmicity in both groups. The fasted condition promoted an increase in IP3R binding and protein level; re-feeding increased the amount of RyR; neither the activity nor expression of SERCA and PMCA protein was affected by fasting-re-feeding conditions. Histochemical experiments showed that the distribution of the Ca2+-handling proteins, between periportal and pericentral zones of the liver, varied with the time of day and the feeding protocol.Our findings show that RF influences mainly the phase and amplitude of hepatic IP3R and SERCA rhythms as well as discrete zonational distribution for RyR, IP3Rs, SERCA, and PMCA within the liver acinus, suggesting that intracellular calcium dynamics could be part of the rheostatic adaptation of the liver due to diurnal meal entrainment/food entrained oscillator expression. | | 23962056
|
Ryanodine receptors are expressed in epidermal keratinocytes and associated with keratinocyte differentiation and epidermal permeability barrier homeostasis. Denda, S; Kumamoto, J; Takei, K; Tsutsumi, M; Aoki, H; Denda, M The Journal of investigative dermatology
132
69-75
2012
요약 표시
Ryanodine receptors (RyRs) have an important role as calcium channels in the regulation of intracellular calcium levels in the nervous system and muscle. In the present study, we investigated the expression of RyR in human epidermis. Immunohistochemical studies and reverse transcription-PCR indicated the expression of RyR type 1, 2, and 3 proteins in epidermal keratinocytes. The expression level of each RyR subtype was higher in differentiating keratinocytes than in proliferative cells. We also demonstrated the functional expression of RyR by calcium imaging. In cultured human keratinocytes, application of the RyR agonist 4-chloro-m-cresol (CMC) induced elevation of the intracellular calcium concentration, and co-application of the RyR antagonist 1,1'-diheptyl-4,4'-bipyridinium dibromide (DHBP) blocked the elevation. Application of CMC accelerated keratinocyte differentiation in vitro. On the other hand, topical application of CMC after tape-stripping of hairless mouse skin delayed barrier recovery, whereas application of an RyR antagonist, dantrolene or DHBP, accelerated the barrier recovery. These results suggest that RyR expressed in epidermal keratinocytes is associated with both differentiation of keratinocytes and epidermal barrier homeostasis. | | 21881589
|
Spaceflight regulates ryanodine receptor subtype 1 in portal vein myocytes in the opposite way of hypertension. Dabertrand, F; Porte, Y; Macrez, N; Morel, JL Journal of applied physiology (Bethesda, Md. : 1985)
112
471-80
2012
요약 표시
Gravity has a structural role for living systems. Tissue development, architecture, and organization are modified when the gravity vector is changed. In particular, microgravity induces a redistribution of blood volume and thus pressure in the astronaut body, abolishing an upright blood pressure gradient, inducing orthostatic hypotension. The present study was designed to investigate whether isolated vascular smooth muscle cells are directly sensitive to altered gravitational forces and, second, whether sustained blood pressure changes act on the same molecular target. Exposure to microgravity during 8 days in the International Space Station induced the decrease of ryanodine receptor subtype 1 expression in primary cultured myocytes from rat hepatic portal vein. Identical results were found in portal vein from mice exposed to microgravity during an 8-day shuttle spaceflight. To evaluate the functional consequences of this physiological adaptation, we have compared evoked calcium signals obtained in myocytes from hindlimb unloaded rats, in which the shift of blood pressure mimics the one produced by the microgravity, with those obtained in myocytes from rats injected with antisense oligonucleotide directed against ryanodine receptor subtype 1. In both conditions, calcium signals implicating calcium-induced calcium release were significantly decreased. In contrast, in spontaneous hypertensive rat, an increase in ryanodine receptor subtype 1 expression was observed as well as the calcium-induced calcium release mechanism. Taken together, our results shown that myocytes were directly sensitive to gravity level and that they adapt their calcium signaling pathways to pressure by the regulation of the ryanodine receptor subtype 1 expression. | | 22096120
|
Localization and phenotype-specific expression of ryanodine calcium release channels in C57BL6 and DBA/2J mouse strains. Huang, W; Xing, W; Ryskamp, DA; Punzo, C; Križaj, D Experimental eye research
93
700-9
2011
요약 표시
The DBA/2J (D2) and C57BL6 (B6) mouse strains are widely used in research as models for anxiety, addiction and chronic glaucoma. D2, but not B6, animals develop elevated intraocular pressure (IOP) that leads to progressive degeneration of retinal ganglion cell (RGC) axons and perikarya. Here we compare the expression and localization of intracellular ryanodine receptor (RyR) Ca(2+) store mechanisms in retinas from D2 and B6 animals. A subset of experiments included retinas from D2-Gpnmb(+) mice as strain-specific controls for D2s. RT-PCR analysis showed 6-8 -fold upregulation RyR1, but not RyR2 or RyR3 transcripts, in D2 retinas. The upregulation was more pronounced in D2 retinas categorized as exhibiting moderate or severe glaucoma eyes compared to eyes with no/little glaucoma. In B6 retinas, RyR1 was expressed in neuronal perikarya/processes across all three retinal layers whereas little labeling was observed in astrocyte, microglial or Müller cell processes. In contrast, RyR1 antibodies strongly labeled radial processes of in D2 Müller glia, in which the staining colocalized with the activated glial stress marker GFAP. RyR1 staining in 1 month-old D2-Gpnmb(+) strain resembled expression in B6 retinas whereas moderate RyR1, but not GFAP, localization to Müller glia was observed in 10-12 months - old D2-Gpnmb(+) eyes. Both RyR1-ir and GFAP-ir were augmented in the microbead injection model of acute experimental glaucoma. We conclude that RyR1 exhibits differential expression and localization in two ubiquitously used mouse lines. While RyR1 signals can be regulated in a strain-specific manner, our data also suggest that RyR1 transcription is induced by early glial activation and/or elevation in intraocular pressure. | Immunofluorescence | 21933672
|
Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. Gokhin, DS; Fowler, VM The Journal of cell biology
194
105-20
2011
요약 표시
The sarcoplasmic reticulum (SR) serves as the Ca(2+) reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γ(cyto)-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γ(cyto)-actin and Tmod3 defined an SR microdomain that was distinct from another Z line-flanking SR microdomain containing Tmod1 and Tmod4. The γ(cyto)-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γ(cyto)-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3-γ(cyto)-actin-sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca(2+) release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γ(cyto)-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils. 기사 전문 | | 21727195
|
Immunohistochemical study of microscopic globular bodies of normal human brain. Saori Odagiri,Fumiaki Mori,Kunikazu Tanji,Naohito Kuroda,Koichi Wakabayashi Biomedical research (Tokyo, Japan)
32
2011
요약 표시
Microscopic globular bodies (MGBs) are brilliantly and homogenously eosinophilic spherical inclusions, 1-10 µm in diameter. They are mainly distributed in the cerebral neocortex and hippocampus in normal individuals ranged in age from first to tenth decade. Ultrastructurally, MGBs are composed of electron-dense granular material and are located in dendrites. However, immunohistochemical profile of MGBs is uncertain. Therefore, we immunohistochemically examined the hippocampus from five control subjects ranged from 25 to 76 years. The marginal portion of MGBs was positive for lysosomal proteases (cathepsins B, D and L), and markers of dendrite (MAP2) and dendritic spine (drebrin). In some cases, MGBs were entirely immunostained with anti-cathepsin D. Among the cathepsins, MGBs were most frequently immunolabeled with anticathepsin D. They were negative for ubiquitin, ubiquitin-proteasome system (p62, NUB1 and EDD1), autophagosome (LC3), cytoskeletal proteins (neurofilament, actin, tubulin and cytokeratin), tau, ?-synuclein and TDP-43. These findings suggest that MGBs are sequestered by lysosome- protease system, but not by ubiquitin-proteasome system or autophagosome. | | 22033303
|
Proteomic study of calpain interacting proteins during skeletal muscle aging. C Brulé,E Dargelos,R Diallo,A Listrat,D Béchet,P Cottin,S Poussard Biochimie
92
2010
요약 표시
Aging is associated with a progressive and involuntary loss of muscle mass also known as sarcopenia. This condition represents a major public health concern. Although sarcopenia is well documented, the molecular mechanisms of this condition still remain unclear. The calcium-dependent proteolytic system is composed of calcium-dependent cysteine proteases named calpains. Calpains are involved in a large number of physiological processes such as muscle growth and differentiation, and pathological conditions such as muscular dystrophies. The aim of this study was to determine the involvement of this proteolytic system in the phenotype associated with sarcopenia by identifying key proteins (substrates or regulators) interacting with calpains during muscle aging. Immunoprecipitations coupled with proteomic analyses and protein identification by mass spectrometry have been undertaken. Reverse co-immunoprecipitation, cellular colocalisation by confocal microscopy and calpain-dependent in vitro proteolysis of several of the identified proteins have been also carried out. We identified ATP synthase subunit alpha and alpha actinin 3 as key partners of calpains during muscle aging. Such interactions would suggest that calpains are implicated in many processes altered during aging including cytoskeletal disorganisation and mitochondrial dysfunction. | | 20850499
|
A calcium-induced calcium release mechanism supports luteinizing hormone-induced testosterone secretion in mouse Leydig cells. Costa, RR; Varanda, WA; Franci, CR American journal of physiology. Cell physiology
299
C316-23
2010
요약 표시
Leydig cells are responsible for the synthesis and secretion of testosterone, processes controlled by luteinizing hormone (LH). Binding of LH to a G protein-coupled receptor in the plasma membrane results in an increase in cAMP and in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here we show, using immunofluorescence, that Leydig cells express ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs). Measurements of intracellular calcium changes using the fluorescent calcium-sensitive dye fluo-3 and confocal microscopy show that both types of receptors are involved in a calcium-induced calcium release (CICR) mechanism, which amplifies the initial Ca(2+) influx through plasma membrane T-type calcium channels (Ca(V)3). The RyRs and IP(3)Rs are functional, as judged from both their activation by caffeine and IP(3) and block by ryanodine and 2-aminoethoxydiphenyl borate (2-APB), respectively. RyRs are the principal players involved in the release of Ca(2+) from the endoplasmic reticulum, as evidenced by the fact that global Ca(2+) changes evoked by LH are readily blocked by 100 muM ryanodine but not by 2-APB or xestospongin C. Finally, steroid production by Leydig cells is inhibited by ryanodine but not by 2-APB. These results not only broaden our understanding of the role played by calcium in Leydig cells but also show, for the first time, that RyRs have an important role in determining testosterone secretion by the testis. | | 20519450
|
Widespread occurrence of eosinophilic neuronal cytoplasmic inclusions in an asymptomatic adult: a novel ubiquitin-negative filamentous inclusion. Fumiaki Mori,Yasuo Miki,Kunikazu Tanji,Tomomi Kusumi,Hiroshi Kijima,Koichi Wakabayashi Neuropathology : official journal of the Japanese Society of Neuropathology
30
2010
요약 표시
We describe a 67-year-old woman without apparent neurological symptoms, in whom postmortem examination revealed widespread occurrence of eosinophilic neuronal cytoplasmic inclusions in the central and peripheral nervous systems. The inclusions were round, oval or rod-like in shape. Immunohistochemically, the inclusions were negative for ubiquitin and not labeled with any other antibodies, except for a partial and weak immunoreactivity with anti-neurofilament occurring rarely. Ultrastructurally, the inclusions revealed two different forms. The common form was entirely composed of bundles of wavy granule-coated filaments (20-30 nm in diameter). The other form consisted of a core containing linear filaments (12-15 nm in diameter) with electron-dense ribosome-like granules and an outer zone with wavy filaments as seen in the former. This inclusion seems to represent a new type of neuronal cytoplasmic inclusion. | | 20337949
|