Effect of lumican on the migration of human mesenchymal stem cells and endothelial progenitor cells: involvement of matrix metalloproteinase-14. Malinowski, Mariusz, et al. PLoS ONE, 7: e50709 (2012)
2012
요약 표시
Increasing number of evidence shows that soluble factors and extracellular matrix (ECM) components provide an optimal microenvironment controlling human bone marrow mesenchymal stem cell (MSC) functions. Successful in vivo administration of stem cells lies in their ability to migrate through ECM barriers and to differentiate along tissue-specific lineages, including endothelium. Lumican, a protein of the small leucine-rich proteoglycan (SLRP) family, was shown to impede cell migration and angiogenesis. The aim of the present study was to analyze the role of lumican in the control of MSC migration and transition to functional endothelial progenitor cell (EPC). | | 23236386
|
Spatial association of the Cav1.2 calcium channel with α5β1-integrin. Chao, JT; Gui, P; Zamponi, GW; Davis, GE; Davis, MJ American journal of physiology. Cell physiology
300
C477-89
2011
요약 표시
Engagement of α(5)β(1)-integrin by fibronectin (FN) acutely enhances Cav1.2 channel (Ca(L)) current in rat arteriolar smooth muscle and human embryonic kidney cells (HEK293-T) expressing Ca(L). Using coimmunoprecipitation strategies, we show that coassociation of Ca(L) with α(5)- or β(1)-integrin in HEK293-T cells is specific and depends on cell adhesion to FN. In rat arteriolar smooth muscle, coassociations between Ca(L) and α(5)β(1)-integrin and between Ca(L) and phosphorylated c-Src are also revealed and enhanced by FN treatment. Using site-directed mutagenesis of Ca(L) heterologously expressed in HEK293-T cells, we identified two regions of Ca(L) required for these interactions: 1) COOH-terminal residues Ser(1901) and Tyr(2122), known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively; and 2) two proline-rich domains (PRDs) near the middle of the COOH terminus. Immunofluorescence confocal imaging revealed a moderate degree of wild-type Ca(L) colocalization with β(1)-integrin on the plasma membrane. Collectively, our results strongly suggest that 1) upon ligation by FN, Ca(L) associates with α(5)β(1)-integrin in a macromolecular complex including PKA, c-Src, and potentially other protein kinases; 2) phosphorylation of Ca(L) at Y(2122) and/or S(1901) is required for association of Ca(L) with α(5)β(1)-integrin; and 3) c-Src, via binding to PRDs that reside in the II-III linker region and/or the COOH terminus of Ca(L), mediates current potentiation following α(5)β(1)-integrin engagement. These findings provide new evidence for how interactions between α(5)β(1)-integrin and FN can modulate Ca(L) entry and consequently alter the physiological function of multiple types of excitable cells. | | 21178109
|
Prosaposin down-modulation decreases metastatic prostate cancer cell adhesion, migration, and invasion. Hu, S; Delorme, N; Liu, Z; Liu, T; Velasco-Gonzalez, C; Garai, J; Pullikuth, A; Koochekpour, S Molecular cancer
9
30
2010
요약 표시
Factors responsible for invasive and metastatic progression of prostate cancer (PCa) remain largely unknown. Previously, we reported cloning of prosaposin (PSAP) and its genomic amplification and/or overexpression in several androgen-independent metastatic PCa cell lines and lymph node metastases. PSAP is the lysosomal precursor of saposins, which serve as activators for lysosomal hydrolases involved in the degradation of ceramide (Cer) and other sphingolipids.Our current data show that, in metastatic PCa cells, stable down-modulation of PSAP by RNA-interference via a lysosomal proteolysis-dependent pathway decreased beta1A-integrin expression, its cell-surface clustering, and adhesion to basement membrane proteins; led to disassembly of focal adhesion complex; and decreased phosphorylative activity of focal adhesion kinase and its downstream adaptor molecule, paxillin. Cathepsin D (CathD) expression and proteolytic activity, migration, and invasion were also significantly decreased in PSAP knock-down cells. Transient-transfection studies with beta1A integrin- or CathD-siRNA oligos confirmed the cause and effect relationship between PSAP and CathD or PSAP and Cer-beta1A integrin, regulating PCa cell migration and invasion.Our findings suggest that by a coordinated regulation of Cer levels, CathD and beta1A-integrin expression, and attenuation of "inside-out" integrin-signaling pathway, PSAP is involved in PCa invasion and therefore might be used as a molecular target for PCa therapy. | Western Blotting | 20132547
|
N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. Tomoya Isaji,Yuya Sato,Tomohiko Fukuda,Jianguo Gu The Journal of biological chemistry
284
2009
요약 표시
N-Glycosylation of integrin alpha5beta1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (alpha5S3-5) on the beta-propeller of the alpha5 subunit are essential to the functional expression of the subunit. In particular, site 5 (alpha5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin beta1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the beta1 subunit (i.e. the Delta4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the beta1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either alpha5S3-5 or alpha5S5 mutant of the alpha5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the beta1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the alpha5S3-5/beta1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the beta1 subunit, it might also be useful for the study of molecular structures. 기사 전문 | | 19261610
|
Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Dulabon, L, et al. Neuron, 27: 33-44 (2000)
2000
요약 표시
Mice that are mutant for Reelin or Dab1, or doubly mutant for the VLDL receptor (VLDLR) and ApoE receptor 2 (ApoER2), show disorders of cerebral cortical lamination. How Reelin and its receptors regulate laminar organization of cerebral cortex is unknown. We show that Reelin inhibits migration of cortical neurons and enables detachment of neurons from radial glia. Recombinant and native Reelin associate with alpha3beta1 integrin, which regulates neuron-glia interactions and is required to achieve proper laminar organization. The effect of Reelin on cortical neuronal migration in vitro and in vivo depends on interactions between Reelin and alpha3beta1 integrin. Absence of alpha3beta1 leads to a reduction of Dab1, a signaling protein acting downstream of Reelin. Thus, Reelin may arrest neuronal migration and promote normal cortical lamination by binding alpha3beta1 integrin and modulating integrin-mediated cellular adhesion. | | 10939329
|