IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity. Bassères, DS; Ebbs, A; Cogswell, PC; Baldwin, AS Genes & cancer
5
41-55
2014
요약 표시
Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity. | Western Blotting | 24955217
|
NF-κB inducing kinase, NIK mediates cigarette smoke/TNFα-induced histone acetylation and inflammation through differential activation of IKKs. Chung, S; Sundar, IK; Hwang, JW; Yull, FE; Blackwell, TS; Kinnula, VL; Bulger, M; Yao, H; Rahman, I PloS one
6
e23488
2011
요약 표시
Nuclear factor (NF)-κB inducing kinase (NIK) is a central player in the non-canonical NF κB pathway, which phosphorylates IκB kinase α (IKKα) resulting in enhancement of target gene expression. We have recently shown that IKKα responds to a variety of stimuli including oxidants and cigarette smoke (CS) regulating the histone modification in addition to its role in NF-κB activation. However, the primary signaling mechanism linking CS-mediated oxidative stress and TNFα with histone acetylation and pro-inflammatory gene transcription is not well understood. We hypothesized that CS and TNFα increase NIK levels causing phosphorylation of IKKα, which leads to histone acetylation.To test this hypothesis, we investigated whether NIK mediates effects of CS and TNFα on histone acetylation in human lung epithelial cells in vitro and in lungs of mouse exposed to CS in vivo. CS increased the phosphorylation levels of IKKα/NIK in lung epithelial cells and mouse lungs. NIK is accumulated in the nuclear compartment, and is recruited to the promoters of pro-inflammatory genes, to induce posttranslational acetylation of histones in response to CS and TNFα. Cells in which NIK is knocked down using siRNA showed partial attenuation of CSE- and TNFα-induced acetylation of histone H3 on pro-inflammatory gene promoters. Additional study to determine the role of IKKβ/NF-κB pathway in CS-induced histone acetylation suggests that the canonical pathway does not play a role in histone acetylation particularly in response to CS in mouse lungs.Overall, our findings provide a novel role for NIK in CS- and TNFα-induced histone acetylation, especially on histone H3K9. | | 21887257
|
NF-κB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-κB activation. Hadian, K; Griesbach, RA; Dornauer, S; Wanger, TM; Nagel, D; Metlitzky, M; Beisker, W; Schmidt-Supprian, M; Krappmann, D The Journal of biological chemistry
286
26107-17
2011
요약 표시
The IκB kinase (IKK) complex acts as a gatekeeper of canonical NF-κB signaling in response to upstream stimulation. IKK activation requires sensing of ubiquitin chains by the essential IKK regulatory subunit IKKγ/NEMO. However, it has remained enigmatic whether NEMO binding to Lys-63-linked or linear ubiquitin chains is critical for triggering IKK activation. We show here that the NEMO C terminus, comprising the ubiquitin binding region and a zinc finger, has a high preference for binding to linear ubiquitin chains. However, immobilization of NEMO, which may be reminiscent of cellular oligomerization, facilitates the interaction with Lys-63 ubiquitin chains. Moreover, selective mutations in NEMO that abolish association with linear ubiquitin but do not affect binding to Lys-63 ubiquitin are only partially compromising NF-κB signaling in response to TNFα stimulation in fibroblasts and T cells. In line with this, TNFα-triggered expression of NF-κB target genes and induction of apoptosis was partially compromised by NEMO mutations that selectively impair the binding to linear ubiquitin chains. Thus, in vivo NEMO interaction with linear and Lys-63 ubiquitin chains is required for optimal IKK activation, suggesting that both type of chains are cooperating in triggering canonical NF-κB signaling. | | 21622571
|
RelB is differentially regulated by IkappaB Kinase-alpha in B cells and mouse lung by cigarette smoke. Yang, SR; Yao, H; Rajendrasozhan, S; Chung, S; Edirisinghe, I; Valvo, S; Fromm, G; McCabe, MJ; Sime, PJ; Phipps, RP; Li, JD; Bulger, M; Rahman, I American journal of respiratory cell and molecular biology
40
147-58
2009
요약 표시
The activation of transcription factor NF-kappaB is controlled by two main pathways: the classical canonical (RelA/p65-p50)- and the alternative noncanonical (RelB/p52)-NF-kappaB pathways. RelB has been shown to play a protective role in RelA/p65-mediated proinflammatory cytokine release in immune-inflammatory lymphoid cells. Increased infiltration of macrophages and lymphoid cells occurs in lungs of patients with chronic obstructive pulmonary disease, leading to abnormal inflammation. We hypothesized that RelB, and its signaling pathway, is differentially regulated in macrophages and B cells and in lung cells, leading to differential regulation of proinflammatory cytokines in response to cigarette smoke (CS). CS exposure increased the levels of RelB and NF-kappaB-inducing kinase associated with recruitment of RelB on promoters of the IL-6 and macrophage inflammatory protein-2 genes in mouse lung. Treatment of macrophage cell line, MonoMac6, with CS extract showed activation of RelB. In contrast, RelB was degraded by a proteasome-dependent mechanism in B lymphocytes (human Ramos, mouse WEHI-231, and primary mouse spleen B cells), suggesting that RelB is differentially regulated in lung inflammatory and lymphoid cells in response to CS exposure. Transient transfection of dominant negative IkappaB-kinase-alpha and double mutants of NF-kappaB-inducing kinase partially attenuated the CS extract-mediated loss of RelB in B cells and normalized the increased RelB level in macrophages. Taken together, these data suggest that RelB is differentially regulated in response to CS exposure in macrophages, B cells, and in lung cells by IkappaB-kinase-alpha-dependent mechanism. Rapid degradation of RelB signals for RelA/p65 activation and loss of its protective ability to suppress the proinflammatory cytokine release in lymphoid B cells. | | 18688039
|
Essential role for epidermal growth factor receptor in glutamate receptor signaling to NF-kappaB. Sitcheran, R; Comb, WC; Cogswell, PC; Baldwin, AS Molecular and cellular biology
28
5061-70
2008
요약 표시
Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-kappaB, which regulates cell proliferation and survival, is activated by glutamate; however, the glutamate receptor-induced signaling pathways that lead to this activation are not clearly defined. Here we investigate the glutamate-induced activation of NF-kappaB in glial cells of the CNS, including primary astrocytes. We show that glutamate induces phosphorylation, nuclear accumulation, DNA binding, and transcriptional activation function of glial p65. The glutamate-induced activation of NF-kappaB requires calcium-dependent IkappaB kinase alpha (IKKalpha) and IKKbeta activation and induces p65-IkappaBalpha dissociation in the absence of IkappaBalpha phosphorylation or degradation. Moreover, glutamate-induced IKK preferentially targets the phosphorylation of p65 but not IkappaBalpha. Finally, we show that the ability of glutamate to activate NF-kappaB requires cross-coupled signaling with the epidermal growth factor receptor. Our results provide insight into a glutamate-induced regulatory pathway distinct from that described for cytokine-induced NF-kappaB activation and have important implications with regard to both normal glial cell physiology and pathogenesis. | Western Blotting | 18541671
|
IKK alpha causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung. Yang, SR; Valvo, S; Yao, H; Kode, A; Rajendrasozhan, S; Edirisinghe, I; Caito, S; Adenuga, D; Henry, R; Fromm, G; Maggirwar, S; Li, JD; Bulger, M; Rahman, I American journal of respiratory cell and molecular biology
38
689-98
2008
요약 표시
Cigarette smoke (CS) induces abnormal and sustained lung inflammation; however, the molecular mechanism underlying sustained inflammation is not known. It is well known that activation of I kappaB kinase beta (IKK beta) leads to transient translocation of active NF-kappaB (RelA/p65-p50) in the nucleus and transcription of pro-inflammatory genes, whereas the role of IKK alpha in perpetuation of sustained inflammatory response is not known. We hypothesized that CS activates IKK alpha and causes histone acetylation on the promoters of pro-inflammatory genes, leading to sustained transcription of pro-inflammatory mediators in mouse lung in vivo and in human monocyte/macrophage cell line (MonoMac6) in vitro. CS exposure to C57BL/6J mice resulted in activation of IKK alpha, leading to phosphorylation of ser10 and acetylation of lys9 on histone H3 on the promoters of IL-6 and MIP-2 genes in mouse lung. The increased level of IKK alpha was associated with increased acetylation of lys310 RelA/p65 on pro-inflammatory gene promoters. The role of IKK alpha in CS-induced chromatin modification was confirmed by gain and loss of IKK alpha in MonoMac6 cells. Overexpression of IKK alpha was associated with augmentation of CS-induced pro-inflammatory effects, and phosphorylation of ser10 and acetylation of lys9 on histone H3, whereas transfection of IKK alpha dominant-negative mutants reduced CS-induced chromatin modification and pro-inflammatory cytokine release. Moreover, phosphorylation of ser276 and acetylation of lys310 of RelA/p65 was augmented in response to CS extract in MonoMac6 cells transfected with IKK alpha. Taken together, these data suggest that IKK alpha plays a key role in CS-induced pro-inflammatory gene transcription through phospho-acetylation of both RelA/p65 and histone H3. | | 18239189
|
IkappaB kinase: beginning, not the end. Verma, I M and Stevenson, J Proc. Natl. Acad. Sci. U.S.A., 94: 11758-60 (1997)
1997
| | 9342307
|