Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells. Nandan, MO; Ghaleb, AM; Bialkowska, AB; Yang, VW Stem cell research
14
10-9
2015
요약 표시
Krüppel-like factor 5 (KLF5) is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5(fl/fl)) were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC) cells that express Lgr5. By 11days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells. | | | 25460247
|
BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. Scholze, AR; Foo, LC; Mulinyawe, S; Barres, BA PloS one
9
e110668
2014
요약 표시
Astrocytes constitute a major cell population in the brain with a myriad of essential functions, yet we know remarkably little about the signaling pathways and mechanisms that direct astrocyte maturation. To explore the signals regulating astrocyte development, we prospectively purified and cultured immature postnatal rodent astrocytes. We identified fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs) as robust trophic factors for immature astrocytes. We showed that astrocytes respond directly to BMPs via phosphorylation of the smad1/5/8 pathway. In vitro, BMP signaling promoted immature astrocytes to adopt multiple characteristics of mature astrocytes, including a more process-bearing morphology, aquaporin-4 (AQP4) and S100β immunoreactivity, limited proliferation, and strong downregulation of epidermal growth factor receptor (EGFR). In vivo, activation of the smad1/5/8 pathway in astrocytes was seen during early postnatal development, but inhibition of astrocyte proliferation was not observed. These insights can aid in the further dissection of the mechanisms and pathways controlling astrocyte biology and development. | Immunofluorescence | | 25330173
|
Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. Kikuchi, K; Hettmer, S; Aslam, MI; Michalek, JE; Laub, W; Wilky, BA; Loeb, DM; Rubin, BP; Wagers, AJ; Keller, C PLoS genetics
10
e1004107
2014
요약 표시
Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells. | Immunofluorescence | | 24453992
|
Sexual differences in cell proliferation in the ventricular zone, cell migration and differentiation in the HVC of juvenile Bengalese finch. Chen, Q; Zhang, X; Zhao, Y; Zhou, X; Sun, L; Zeng, S; Zuo, M; Zhang, X PloS one
9
e97403
2014
요약 표시
Song control nuclei have distinct sexual differences and thus are an ideal model to address how brain areas are sexually differentiated. Through a combination of histological analysis and electrical lesions, we first identified the ventricle site for HVC progenitor cells. We then found that there were significant sex differences in the cellular proliferation activity in the ventricular zone of the HVC, the number of migrating cells along the radial cells (positive immunoreactions to vimentin) and differentiation towards neurons. Through co-culturing of male and female slices containing the developing HVC in the same well, we found that the male slices could produce diffusible substances to masculinize the female HVC. By adding estrogen, an estrogen antagonist, brain-derived neurotrophic factor (BDNF) or its antibody into the culture medium, separately or in combination, we found that these diffusible substances may include estrogen and BDNF. Finally, we found that 1) estrogen-induced BDNF upregulation could be detected 48 hr after estrogen treatment and could not be blocked by a vascular endothelial growth factor (VEGF) receptor inhibitor and 2) the amount of VEGF mRNA expressed in the developing HVC and its adjacent area did not display any significant sex differences, as did the distribution of VEGF and laminin-expressing endothelial cells in the developing HVC. Because these findings are largely different from previous reports on the adult female HVC, it is suggested that our estrogen-induced BDNF up-regulation and the resultant sexual differentiation might not be mediated by VEGF and endothelial cells, but instead, may result from the direct effects of estrogen on BDNF. | | | 24841082
|
Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson's disease. Van Kampen, JM; Baranowski, D; Kay, DG PloS one
9
e97032
2014
요약 표시
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD. | Immunohistochemistry | Mouse | 24804730
|
Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. Kim, E; Yang, J; Beltran, CD; Cho, S Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
34
1411-9
2014
요약 표시
Monocytes/macrophages (MMs), mononuclear phagocytes, have been implicated in stroke-induced inflammation and injury. However, the presence of pro-inflammatory Ly-6C(high) and antiinflammatory Ly-6C(low) monocyte subsets raises uncertainty regarding their role in stroke pathologic assessment. With recent identification of the spleen as an immediate reservoir of MMs, this current study addresses whether the spleen-derived MMs are required for stroke pathologic assessment. We observed that the spleen was contracted in poststroke animals and the contraction was accompanied by decreased number of Ly-6C(high) and Ly-6C(low) subsets in the spleen. The deployment of these subsets from the spleen temporally coincided with respective increases in the ischemic brain. Compared to mice with the spleen, mice receiving a splenectomy just before the stroke displayed less accumulation of Ly-6C(high) and Ly-6C(low) MMs in the brain. Despite the reduced accumulation of both subsets, infarct size and swelling were not reduced in the asplenic mice. The dissociative findings of infarct size and extent of MM infiltration in the postischemic brain indicate minimal involvement of spleen-derived total MMs in acute infarct development. Selective Ly-6C(high) or Ly-6C(low) MM targeting is suggested to address the contribution of the individual subset to acute stroke pathologic assessment. | | | 24865998
|
Kif3a controls murine nephron number via GLI3 repressor, cell survival, and gene expression in a lineage-specific manner. Chi, L; Galtseva, A; Chen, L; Mo, R; Hui, CC; Rosenblum, ND PloS one
8
e65448
2013
요약 표시
The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3(Δ699/+) ) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. | Immunofluorescence | | 23762375
|
Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Chang, W; Folker, ES; Worman, HJ; Gundersen, GG Molecular biology of the cell
24
3869-80
2013
요약 표시
In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity. | | | 24152738
|
In silico screening for palmitoyl substrates reveals a role for DHHC1/3/10 (zDHHC1/3/11)-mediated neurochondrin palmitoylation in its targeting to Rab5-positive endosomes. Oku, S; Takahashi, N; Fukata, Y; Fukata, M The Journal of biological chemistry
288
19816-29
2013
요약 표시
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca(2+)/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting. | | | 23687301
|
Synapse maturation by activity-dependent ectodomain shedding of SIRPα. Toth, AB; Terauchi, A; Zhang, LY; Johnson-Venkatesh, EM; Larsen, DJ; Sutton, MA; Umemori, H Nature neuroscience
16
1417-25
2013
요약 표시
Formation of appropriate synaptic connections is critical for proper functioning of the brain. After initial synaptic differentiation, active synapses are stabilized by neural activity-dependent signals to establish functional synaptic connections. However, the molecular mechanisms underlying activity-dependent synapse maturation remain to be elucidated. Here we show that activity-dependent ectodomain shedding of signal regulatory protein-α (SIRPα) mediates presynaptic maturation. Two target-derived molecules, fibroblast growth factor 22 and SIRPα, sequentially organize the glutamatergic presynaptic terminals during the initial synaptic differentiation and synapse maturation stages, respectively, in the mouse hippocampus. SIRPα drives presynaptic maturation in an activity-dependent fashion. Remarkably, neural activity cleaves the extracellular domain of SIRPα, and the shed ectodomain in turn promotes the maturation of the presynaptic terminal. This process involves calcium/calmodulin-dependent protein kinase, matrix metalloproteinases and the presynaptic receptor CD47. Finally, SIRPα-dependent synapse maturation has an impact on synaptic function and plasticity. Thus, ectodomain shedding of SIRPα is an activity-dependent trans-synaptic mechanism for the maturation of functional synapses. | | | 24036914
|