Activin A protects midbrain neurons in the 6-hydroxydopamine mouse model of Parkinson's disease. Stayte, S; Rentsch, P; Li, KM; Vissel, B PloS one
10
e0124325
2015
요약 표시
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain. | | | 25902062
|
Are striatal tyrosine hydroxylase interneurons dopaminergic? Xenias, HS; Ibáñez-Sandoval, O; Koós, T; Tepper, JM The Journal of neuroscience : the official journal of the Society for Neuroscience
35
6584-99
2015
요약 표시
Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. | | | 25904808
|
Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. Cartier, E; Hamilton, PJ; Belovich, AN; Shekar, A; Campbell, NG; Saunders, C; Andreassen, TF; Gether, U; Veenstra-Vanderweele, J; Sutcliffe, JS; Ulery-Reynolds, PG; Erreger, K; Matthies, HJ; Galli, A EBioMedicine
2
135-146
2015
요약 표시
Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA.We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD).Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis.We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD. | Western Blotting | | 25774383
|
Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. Meka, DP; Müller-Rischart, AK; Nidadavolu, P; Mohammadi, B; Motori, E; Ponna, SK; Aboutalebi, H; Bassal, M; Annamneedi, A; Finckh, B; Miesbauer, M; Rotermund, N; Lohr, C; Tatzelt, J; Winklhofer, KF; Kramer, ER The Journal of clinical investigation
125
1873-85
2015
요약 표시
Parkin and the glial cell line-derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson's disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD. | | | 25822020
|
Morphological evidence for dopamine interactions with pallidal neurons in primates. Eid, L; Parent, M Frontiers in neuroanatomy
9
111
2015
요약 표시
The external (GPe) and internal (GPi) segments of the primate globus pallidus receive dopamine (DA) axonal projections arising mainly from the substantia nigra pars compacta and this innervation is here described based on tyrosine hydroxylase (TH) immunohistochemical observations gathered in the squirrel monkey (Saimiri sciureus). At the light microscopic level, unbiased stereological quantification of TH positive (+) axon varicosities reveals a similar density of innervation in the GPe (0.19 ± 0.02 × 10(6) axon varicosities/mm(3) of tissue) and GPi (0.17 ± 0.01 × 10(6)), but regional variations occur in the anteroposterior and dorsoventral axes in both GPe and GPi and along the mediolateral plane in the GPe. Estimation of the neuronal population in the GPe (3.47 ± 0.15 × 10(3) neurons/mm(3)) and GPi (2.69 ± 0.18 × 10(6)) yields a mean ratio of, respectively, 28 ± 3 and 68 ± 15 TH+ axon varicosities/pallidal neuron. At the electron microscopic level, TH+ axon varicosities in the GPe appear significantly smaller than those in the GPi and very few TH+ axon varicosities are engaged in synaptic contacts in the GPe (17 ± 3%) and the GPi (15 ± 4%) compared to their unlabeled counterparts (77 ± 6 and 50 ± 12%, respectively). Genuine synaptic contacts made by TH+ axon varicosities in the GPe and GPi are of the symmetrical and asymmetrical type. Such synaptic contacts together with the presence of numerous synaptic vesicles in all TH+ axon varicosities observed in the GPe and GPi support the functionality of the DA pallidal innervation. By virtue of its predominantly volumic mode of action, DA appears to exert a key modulatory effect upon pallidal neurons in concert with the more direct GABAergic inhibitory and glutamatergic excitatory actions of the striatum and subthalamic nucleus. We argue that the DA pallidal innervation plays a major role in the functional organization of the primate basal ganglia under both normal and pathological conditions. | | | 26321923
|
Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Dearborn, JT; Harmon, SK; Fowler, SC; O'Malley, KL; Taylor, GT; Sands, MS; Wozniak, DF Scientific reports
5
12752
2015
요약 표시
Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The PPT1-deficient mouse (Cln1(-/-)) is a useful phenocopy of human INCL. Cln1(-/-) mice display retinal dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about the cognitive and behavioral functions of Cln1(-/-) mice during disease progression. In the present study, younger (~1-2 months of age) Cln1(-/-) mice showed minor deficits in motor/sensorimotor functions while older (~5-6 months of age) Cln1(-/-) mice exhibited more severe impairments, including decreased locomotor activity, inferior cued water maze performance, decreased running wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such as some learning and memory capabilities seemed intact in older Cln1(-/-) mice. Younger and older Cln1(-/-) mice presented with walking initiation defects, gait abnormalities, and slowed movements, which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no evidence of alterations in dopaminergic markers in Cln1(-/-) mice. Results from this study demonstrate quantifiable changes in behavioral functions during progression of murine INCL and suggest that Parkinson-like motor/sensorimotor deficits in Cln1(-/-) mice are not mediated by dopamine deficiency. | | | 26238334
|
2-isoxazol-3-phenyltropane derivatives of cocaine: molecular and atypical system effects at the dopamine transporter. Hiranita, T; Wilkinson, DS; Hong, WC; Zou, MF; Kopajtic, TA; Soto, PL; Lupica, CR; Newman, AH; Katz, JL The Journal of pharmacology and experimental therapeutics
349
297-309
2014
요약 표시
The present study examined RTI-371 [3β-(4-methylphenyl)-2β-[3-(4-chlorophenyl)-isoxazol-5-yl]tropane], a phenyltropane cocaine analog with effects distinct from cocaine, and assessed potential mechanisms for those effects by comparison with its constitutional isomer, RTI-336 [3β-(4-chlorophenyl)-2β-[3-(4-methylphenyl)-isoxazol-5-yl]tropane]. In mice, RTI-371 was less effective than cocaine and RTI-336 in stimulating locomotion, and incompletely substituted (∼60% maximum at 5 minutes or 1 hour after injection) in a cocaine (10 mg/kg i.p.)/saline discrimination procedure; RTI-336 completely substituted. In contrast to RTI-336, RTI-371 was not self-administered, and its pretreatment (1.0-10 mg/kg i.p.) dose-dependently decreased maximal cocaine self-administration more potently than food-maintained responding. RTI-336 pretreatment dose-dependently left-shifted the cocaine self-administration dose-effect curve. Both RTI-336 and RTI-371 displaced [(3)H]WIN35,428 [[(3)H](-)-3β-(4-fluorophenyl)-tropan-2β-carboxylic acid methyl ester tartrate] binding to striatal dopamine transporters (DATs) with Ki values of 10.8 and 7.81 nM, respectively, and had lower affinities at serotonin or norepinephrine transporters, or muscarinic and σ receptors. The relative low affinity at these sites suggests the DAT as the primary target of RTI-371 with minimal contributions from these other targets. In biochemical assays probing the outward-facing DAT conformation, both RTI-371 and RTI-336 had effects similar to cocaine, suggesting little contribution of DAT conformation to the unique pharmacology of RTI-371. The locomotor-stimulant effects of RTI-371 (3.0-30 mg/kg i.p.) were comparable in wild-type and knockout cannabinoid CB1 receptor (CB1R) mice, indicating that previously reported CB1 allosteric effects do not decrease cocaine-like effects of RTI-371. DAT occupancy in vivo was most rapid with cocaine and least with RTI-371. The slow apparent association rate may allow compensatory actions that in turn dampen cocaine-like stimulation, and give RTI-371 its unique pharmacologic profile. | | | 24518035
|
Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Ting, JT; Feng, G Frontiers in behavioral neuroscience
8
111
2014
요약 표시
The development and application of diverse BAC transgenic rodent lines has enabled rapid progress for precise molecular targeting of genetically-defined cell types in the mammalian central nervous system. These transgenic tools have played a central role in the optogenetic revolution in neuroscience. Indeed, an overwhelming proportion of studies in this field have made use of BAC transgenic Cre driver lines to achieve targeted expression of optogenetic probes in the brain. In addition, several BAC transgenic mouse lines have been established for direct cell-type specific expression of Channelrhodopsin-2 (ChR2). While the benefits of these new tools largely outweigh any accompanying challenges, many available BAC transgenic lines may suffer from confounds due in part to increased gene dosage of one or more "extra" genes contained within the large BAC DNA sequences. Here we discuss this under-appreciated issue and propose strategies for developing the next generation of BAC transgenic lines that are devoid of extra genes. Furthermore, we provide evidence that these strategies are simple, reproducible, and do not disrupt the intended cell-type specific transgene expression patterns for several distinct BAC clones. These strategies may be widely implemented for improved BAC transgenesis across diverse disciplines. | | | 24772073
|
Axonal targeting of the serotonin transporter in cultured rat dorsal raphe neurons is specified by SEC24C-dependent export from the endoplasmic reticulum. Montgomery, TR; Steinkellner, T; Sucic, S; Koban, F; Schüchner, S; Ogris, E; Sitte, HH; Freissmuth, M The Journal of neuroscience : the official journal of the Society for Neuroscience
34
6344-51
2014
요약 표시
Export of the serotonin transporter (SERT) from the endoplasmic reticulum (ER) is mediated by the SEC24C isoform of the coatomer protein-II complex. SERT must enter the axonal compartment and reach the presynaptic specialization to perform its function, i.e., the inward transport of serotonin. Refilling of vesicles is contingent on the operation of an efficient relay between SERT and the vesicular monoamine transporter-2 (VMAT2). Here, we visualized the distribution of both endogenously expressed SERT and heterologously expressed variants of human SERT in dissociated rat dorsal raphe neurons to examine the role of SEC24C-dependent ER export in axonal targeting of SERT. We conclude that axonal delivery of SERT is contingent on recruitment of SEC24C in the ER. This conclusion is based on the following observations. (1) Both endogenous and heterologously expressed SERT were delivered to the extensive axonal arborizations and accumulated in bouton-like structures. (2) In contrast, SERT-(607)RI(608)-AA, in which the binding site of SEC24C is disrupted, remained confined to the microtubule-associated protein 2-positive somatodendritic compartment. (3) The overexpression of dominant-negative SEC24C-D(796)V/D(797)N (but not of the corresponding SEC24D mutant) redirected both endogenous SERT and heterologously expressed yellow fluorescent protein-SERT from axons to the somatodendritic region. (4) SERT-K(610)Y, which harbors a mutation converting it into an SEC24D client, was rerouted from the axonal to the somatodendritic compartment by dominant-negative SEC24D. In contrast, axonal targeting of the VMAT2 was disrupted by neither dominant-negative SEC24C nor dominant-negative SEC24D. This suggests that SERT and VMAT2 reach the presynaptic specialization by independent routes. | | | 24790205
|
Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson's disease. Van Kampen, JM; Baranowski, D; Kay, DG PloS one
9
e97032
2014
요약 표시
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD. | Immunohistochemistry | Mouse | 24804730
|