Biodegradable Gelatin Microcarriers Facilitate Re-Epithelialization of Human Cutaneous Wounds - An In Vitro Study in Human Skin. Lönnqvist, S; Rakar, J; Briheim, K; Kratz, G PloS one
10
e0128093
2015
요약 표시
The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds. | 26061630
|
Epidermal differentiation and loss of clonal growth potential of human limbal basal epithelial progenitor cells during intrastromal invasion. Tan, EK; He, H; Tseng, SC Investigative ophthalmology & visual science
52
4534-45
2011
요약 표시
Intrastromal invasion by limbal basal epithelial progenitor cells in explant cultures is associated with epithelial-mesenchymal transition. It remains unclear whether intrastromal invasion is contingent on culturing conditions and whether invaded cells retain their progenitor status and original lineage.Human limbal explants were cultured on various culture substrates, with or without air-lifting (AL), and subjected to hematoxylin and eosin staining and immunostaining to pan-cytokeratins, p63α, ΔNp63, Pax6, CK10, and CK12. Single cells obtained by trypsin/EDTA from dispase-isolated epithelial sheets from both the outgrowth and the surface epithelium, or by collagenase from the remaining stroma, were seeded on 3T3 feeder layers.Intrastromal invasion was verified in all seven explant cultures by positive pan-cytokeratin staining. Immunofluorescence staining revealed that invaded epithelial cells were positive for p63α and ΔNp63, with or without nuclear staining of Pax6. Double immunostaining to CK10 and CK12 revealed that squamous metaplasia induced by AL was noted on the surface epithelium but not in intrastromally invaded epithelial cells. On 3T3 feeder layers, both the outgrowth and the surface epithelium yielded significant numbers of holoclones and meroclones positive to ΔNp63 but negative to CK10 and CK12. In contrast, intrastromally invaded epithelial cells generated only paraclones negative to ΔNp63 and CK12 but positive to CK10 regardless of culturing conditions.Intrastromal invasion by limbal basal epithelial progenitor cells is universal in all explant culture conditions, explaining why there is a gradual decline of outgrowth potential. Alteration of the limbal stromal niche leads invaded epithelial cells to adopt an epidermal fate. | 21527382
|
Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nana Naetar,Barbara Korbei,Serguei Kozlov,Marc A Kerenyi,Daniela Dorner,Rosana Kral,Ivana Gotic,Peter Fuchs,Tatiana V Cohen,Reginald Bittner,Colin L Stewart,Roland Foisner Nature cell biology
10
2008
요약 표시
Lamina-associated polypeptide (LAP) 2alpha is a chromatin-associated protein that binds A-type lamins. Mutations in both LAP2alpha and A-type lamins are linked to human diseases called laminopathies, but the molecular mechanisms are poorly understood. The A-type lamin-LAP2alpha complex interacts with and regulates retinoblastoma protein (pRb), but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin-LAP2alpha complex with the use of LAP2alpha-deficient mice. We show that LAP2alpha loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model in which LAP2alpha defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues. | 18849980
|
Keratin expression in cervical cancer. Smedts, F, et al. Am. J. Pathol., 141: 497-511 (1992)
1992
요약 표시
Using a panel of 21 monoclonal and 2 polyclonal keratin antibodies, capable of detecting separately 11 subtypes of their epithelial intermediate filament proteins at the single cell level, we investigated keratin expression in 16 squamous cell carcinomas, 9 adenocarcinomas, and 3 adenosquamous carcinomas of the human uterine cervix. The keratin phenotype of the keratinizing squamous cell carcinoma was found to be most complex comprising keratins 4, 5, 6, 8, 13, 14, 16, 17, 18, 19, and usually keratin 10. The nonkeratinizing variety of the squamous cell carcinoma expressed keratins 6, 14, 17, and 19 in all cases, usually 4, 5, 7, 8, and 18, and sometimes keratins 10, 13, and 16. Adenocarcinomas displayed a less complex keratin expression pattern comprising keratins 7, 8, 17, 18, and 19, while keratin 14 was often present and keratins 4, 5, 10 and 13 were sporadically found in individual cells in a few cases. These keratin phenotypes may be useful in differential diagnostic considerations when distinguishing between keratinizing and nonkeratinizing carcinomas (using keratin 10, 13, and 16 antibodies), and also in the distinction between nonkeratinizing carcinomas and poorly differentiated adenocarcinomas, which do not express keratins 5 and 6. Keratin 17 may also be useful in distinguishing carcinomas of the cervix from those of the colon and also from mesotheliomas. Furthermore the presence of keratin 17 in a CIN I, II, or III lesion may indicate progressive potential while its absence could be indicative of a regressive behavior. Because most carcinomas express keratins 8, 14, 17, 18, and 19, we propose that this expression pattern reflects the origin of cervical cancer from a common progenitor cell, i.e., the endocervical reserve cell that has been shown to express keratins 5, 8, 14, 17, 18, and 19. | 1379783
|