Rapid in vivo measurement of β-amyloid reveals biphasic clearance kinetics in an Alzheimer's mouse model Carla M Yuede 1 , Hyo Lee 2 , Jessica L Restivo 2 , Todd A Davis 2 , Jane C Hettinger 2 , Clare E Wallace 2 , Katherine L Young 2 , Margaret R Hayne 2 , Guojun Bu 3 , Chen-Zhong Li 4 , John R Cirrito J Exp Med
213(5)
677-85
2016
요약 표시
Findings from genetic, animal model, and human studies support the observation that accumulation of the β-amyloid (Aβ) peptide in the brain plays a central role in the pathogenic cascade of Alzheimer's disease (AD). Human studies suggest that one key factor leading to accumulation is a defect in brain Aβ clearance. We have developed a novel microimmunoelectrode (MIE) to study the kinetics of Aβ clearance using an electrochemical approach. This is the first study using MIEs in vivo to measure rapid changes in Aβ levels in the brains of living mice. Extracellular, interstitial fluid (ISF) Aβ levels were measured in the hippocampus of APP/PS1 mice. Baseline levels of Aβ40 in the ISF are relatively stable and begin to decline within minutes of blocking Aβ production with a γ-secretase inhibitor. Pretreatment with a P-glycoprotein inhibitor, which blocks blood-brain barrier transport of Aβ, resulted in significant prolongation of Aβ40 half-life, but only in the latter phase of Aβ clearance from the ISF. | 27069115
|
TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model Yaming Wang 1 , Marina Cella 2 , Kaitlin Mallinson 3 , Jason D Ulrich 3 , Katherine L Young 3 , Michelle L Robinette 2 , Susan Gilfillan 2 , Gokul M Krishnan 2 , Shwetha Sudhakar 3 , Bernd H Zinselmeyer 2 , David M Holtzman 3 , John R Cirrito 3 , Marco Colonna Cell
160(6)
1061-71
2015
요약 표시
Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor that triggers intracellular protein tyrosine phosphorylation. Recent genome-wide association studies have shown that a rare R47H mutation of TREM2 correlates with a substantial increase in the risk of developing Alzheimer's disease (AD). To address the basis for this genetic association, we studied TREM2 deficiency in the 5XFAD mouse model of AD. We found that TREM2 deficiency and haploinsufficiency augment β-amyloid (Aβ) accumulation due to a dysfunctional response of microglia, which fail to cluster around Aβ plaques and become apoptotic. We further demonstrate that TREM2 senses a broad array of anionic and zwitterionic lipids known to associate with fibrillar Aβ in lipid membranes and to be exposed on the surface of damaged neurons. Remarkably, the R47H mutation impairs TREM2 detection of lipid ligands. Thus, TREM2 detects damage-associated lipid patterns associated with neurodegeneration, sustaining the microglial response to Aβ accumulation. | 25728668
|
Microbiosensor for Alzheimer's disease diagnostics: detection of amyloid beta biomarkers Shradha Prabhulkar 1 , Rudolph Piatyszek, John R Cirrito, Ze-Zhi Wu, Chen-Zhong Li J Neurochem
122(2)
374-81
2012
요약 표시
Alzheimer's disease (AD) affects about 35.6 million people worldwide, and if current trends continue with no medical advancement, one in 85 people will be affected by 2050. Thus, there is an urgent need to develop a cost-effective, easy to use, sensor platform to diagnose and study AD. The measurement of peptide amyloid beta (Aβ) found in CSF has been assessed as an avenue to diagnose and study the disease. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Therefore, we have developed a multiplexed, implantable immunosensor to detect amyloid beta (Aβ) isoforms using triple barrel carbon fiber microelectrodes as the sensor platform. Antibodies act as the biorecognition element of the sensor and selectively capture and bind Aβ1-40 and Aβ1-42 to the electrode surface. Electrochemistry was used to measure the intrinsic oxidation signal of Aβ at 0.65 V (vs. Ag/AgCl), originating from a single tyrosine residue found at position 10 in its amino acid sequence. Using the proposed immunosensor Aβ1-40 and Aβ1-42 could be specifically detected in CSF from mice within a detection range of 20-50 nM and 20-140 nM respectively. The immunosensor enables real-time, highly sensitive detection of Aβ and opens up the possibilities for diagnostic ex vivo applications and research-based in vivo studies. | 22372824
|
Opposing synaptic regulation of amyloid-β metabolism by NMDA receptors in vivo Deborah K Verges 1 , Jessica L Restivo, Whitney D Goebel, David M Holtzman, John R Cirrito J Neurosci
31(31)
11328-37
2011
요약 표시
The concentration of amyloid-β (Aβ) within the brain extracellular space is one determinant of whether the peptide will aggregate into toxic species that are important in Alzheimer's disease (AD) pathogenesis. Some types of synaptic activity can regulate Aβ levels. Here we demonstrate two distinct mechanisms that are simultaneously activated by NMDA receptors and regulate brain interstitial fluid (ISF) Aβ levels in opposite directions in the living mouse. Depending on the dose of NMDA administered locally to the brain, ISF Aβ levels either increase or decrease. Low doses of NMDA increase action potentials and synaptic transmission which leads to an elevation in synaptic Aβ generation. In contrast, high doses of NMDA activate signaling pathways that lead to ERK (extracellular-regulated kinase) activation, which reduces processing of APP into Aβ. This depression in Aβ via APP processing occurs despite dramatically elevated synaptic activity. Both of these synaptic mechanisms are simultaneously active, with the balance between them determining whether ISF Aβ levels will increase or decrease. NMDA receptor antagonists increase ISF Aβ levels, suggesting that basal activity at these receptors normally suppresses Aβ levels in vivo. This has implications for understanding normal Aβ metabolism as well as AD pathogenesis. | 21813692
|
Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice Jessica Koenigsknecht-Talboo 1 , Melanie Meyer-Luehmann, Maia Parsadanian, Monica Garcia-Alloza, Mary Beth Finn, Bradley T Hyman, Brian J Bacskai, David M Holtzman J Neurosci
28(52)
14156-64
2008
요약 표시
Aggregation of amyloid-beta (Abeta) peptide in the brain in the form of neuritic plaques and cerebral amyloid angiopathy (CAA) is a key feature of Alzheimer's disease (AD). Microglial cells surround aggregated Abeta and are believed to play a role in AD pathogenesis. A therapy for AD that has entered clinical trials is the administration of anti-Abeta antibodies. One mechanism by which certain anti-Abeta antibodies have been proposed to exert their effects is via antibody-mediated microglial activation. Whether, when, or to what extent microglial activation occurs after systemic administration of anti-Abeta antibodies has not been fully assessed. We administered an anti-Abeta antibody (m3D6) that binds aggregated Abeta to PDAPP mice, an AD mouse model that was bred to contain fluorescent microglia. Three days after systemic administration of m3D6, there was a marked increase in both the number of microglial cells and processes per cell visualized in vivo by multiphoton microscopy. These changes required the Fc domain of m3D6 and were not observed with an antibody specific to soluble Abeta. These findings demonstrate that some effects of antibodies that recognize aggregated Abeta are rapid, involve microglia, and provide insight into the mechanism of action of a specific passive immunotherapy for AD. | 19109498
|