다음 MAP메이트™는 통합될 수 없습니다: -다른 분석 완충용액이 필요한 MAP메이트™. -인산 특이성 및 총 MAP메이트™ 조합, 예: 총 GSK3β 및 GSK3β(Ser 9). -PanTyr 및 자리 특이성 MAP메이트™, 예: Phospho-EGF 수용체 및 phospho-STAT1(Tyr701). -단일 표적(Akt, STAT3)를 위한 1개 이상의 1 phospho-MAP메이트™. - GAPDH 및 β-Tubulin은 panTyr를 포함하는 키트 또는 MAP메이트™와 통합될 수 없습니다.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
이 제품은 즐겨찾기에 저장되었습니다.
종
패널 유형
선택하신 키트
수량
카탈로그 번호
주문 설명
포장 단위
기재 가격
96-Well Plate
수량
카탈로그 번호
주문 설명
포장 단위
기재 가격
다른 시약 추가 (MAP메이트 사용을 위해 완충용액과 검출 키트가 필요함)
수량
카탈로그 번호
주문 설명
포장 단위
기재 가격
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
공간 절약 옵션 다수의 키트를 구매하시는 고객은 고용량 저장을 위해 키트 포장을 제거하고 비닐백에 담긴 멀티플레스 분석 구성품을 받아 저장 공간을 절약하도록 선택할 수 있습니다.
이 제품은 즐겨찾기에 저장되었습니다.
해당 제품은 고객님의 카트에 추가되었습니다.
이제 다른 키트를 사용자 지정하거나, 사전 혼합된 키트를 선택하거나, 결재하거나 또는 주문 도구를 종료할 수 있습니다.
Infrared Spectroscopy (IR) is the analysis of infrared light interacting with a molecule. IR spectroscopy exploits the fact that molecules absorb radiation at specific frequencies characteristic of their structure.
Addition of the Fourier Transform, in the 1960s, to IR analysis resulted in higher resolution and decreased noise, increasing the attractiveness of this technique. The infrared portion of the electromagnetic spectrum is divided into three regions: the near-, mid- and far-infrared, named for their relation to the visible spectrum.
Mid-infrared (MIR) spectroscopy is based on the absorption of radiation in the approximate range 4000–400 cm-1, and is considered among the most promising spectroscopic techniques for biomedical research and diagnostics. Components of complex biomolecular mixtures (proteins, lipids, carbohydrates etc.) have separable IR spectra therefore they can be analyzed simultaneously.
Applications of Mid-Infrared (MIR) Spectroscopy in Protein Analysis
MIR spectroscopy is one of the most well-established techniques for the analysis of protein and peptide structure. Several Amide bands have been identified in MIR spectroscopy, allowing for characterization of proteins. Among these, Amide I (1600 – 1690 cm-1) and Amide II (1480 – 1575 cm-1) are recognized as the most representative of all vibration modes.
Attenuated total reflection (ATR) spectroscopy and transmission flow-through cells used in combination with complex chemometric data analysis have recently enabled quantitative protein analysis directly from aqueous samples. However, to enhance sensitivity, the multivariate approach (e.g. partial least-squares analysis (PLS)) is usually applied to data analysis. Because this multivariate approach requires a certain level of IR expertise for proper manipulation of spectra and data analysis, the method has not been routinely used in life science laboratories.
Principles of Quantitation Using the Direct Detect® FTIR Spectrometer
Sample analysis by the Direct Detect® FTIR spectrometer starts with a hydrophilic polytetrafluoroethylene (PTFE) membrane engineered for sample application and retention. The membrane is transparent in the MIR regions used for protein and lipid/detergent analysis.
Because the method requires minimal volume (2 µL), the method can be successfully applied to the analysis of precious material available in limited quantities.
A simple univariate (Beer–Lambert) analysis, applied by Direct Detect® Spectrometer, relies on integration of Amide I band and uses directly searchable absorptions on the spectrum curve. Protein quantification by MIR, while still based on a curve-fitting technique, presents substantial advantages over other current methodologies (such as UV absorbance or colorimetric assays):
Unlike UV absorbance at 280 nm, MIR-based protein quantitation is much less dependent upon amino acid composition.
Amide bond quantitation by MIR is not subject to signal interference from many common biological buffer components, such as detergents, reducing agents and chelators, demonstrating superiority over standard colorimetric assays.
In contrast to UV spectroscopy or any other known protein quantitation method, simple, MIR-based analysis can also be employed for simultaneous analysis of lipids or detergents.