Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression. Zhou T, Wang S, Ren H, Qi XR, Luchetti S, Kamphuis W, Zhou JN, Wang G, Swaab DF Brain
2010
Show Abstract
The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the present study we investigate whether the two forms of dendritic cell nuclear protein-1 might act on corticotropin-releasing hormone, which plays a crucial role in the stress response and in the pathogenesis of depression. The messenger RNA expression of dendritic cell nuclear protein-1 appeared to be increased in the laser micro-dissected paraventricular nucleus of patients with depression compared with control subjects. Dendritic cell nuclear protein-1 was also found to be co-localized with corticotropin-releasing hormone in paraventricular nucleus neurons. Moreover, full-length dendritic cell nucleus protein-1 bound to and transactivated the promoter of corticotropin-releasing hormone in human embryonic kidney 293 cells. We propose that full-length dendritic cell nucleus protein-1 may play a role in the pathogenesis of depressive disorders by enhancing corticotropin-releasing hormone expression in the hypothalamic paraventricular nucleus. | 20693543
 |
Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Koh HJ, Toyoda T, Fujii N, Jung MM, Rathod A, Middelbeek RJ, Lessard SJ, Treebak JT, Tsuchihara K, Esumi H, Richter EA, Wojtaszewski JF, Hirshman MF, Goodyear LJ Proc Natl Acad Sci U S A
2010
Show Abstract
The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conjunction with previous studies of ablated AMPKalpha2 activity showing no effect on contraction-stimulated glucose transport, suggests that one or more AMPK-related protein kinases are important for this process. Muscle contraction increased sucrose nonfermenting AMPK-related kinase (SNARK) activity, an effect blunted in the muscle-specific LKB1 knockout mice. Expression of a mutant SNARK in mouse tibialis anterior muscle impaired contraction-stimulated, but not insulin-stimulated, glucose transport. Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction-stimulated glucose transport in skeletal muscle. | 20713714
 |
Lung damage in mice after inhalation of nanofilm spray products: The role of perfluorination and free hydroxyl groups. Nørgaard AW, Larsen ST, Hammer M, Poulsen SS, Jensen KA, Nielsen GD, Wolkoff P Toxicol Sci
2010
Show Abstract
Exposures to two commercial nanofilm spray products (NFPs), a floor sealant (NFP 1) and a coating product for tiles (NFP 2), were investigated for airway irritation, airway inflammation and lung damage in a mouse inhalation model. The particle-exposure was characterized by particle number, particle size-distribution and gravimetric analysis. BALB/cJ mice were exposed for 60 min to the aerosolized products at 3.3-60 mg/m(3) (10(5) - 10(6) fine particles/cm(3)) measured in the breathing zone of the mice. Lung inflammation and lung damage were assessed by study of bronchoalveolar lavage fluid (BALF) cytology, protein in BALF and histology. Mass spectral analysis showed that NFP 1 and NFP 2 contained hydrolysates and condensates of a perfluorosilane and alkylsilane, respectively. NFP 1 induced a concentration-dependent decrease of the tidal volume lasting for at least one day. Exposure concentrations above 16.1 mg/m(3) (2.5x10(6) fine particles/cm(3)) gave rise to significant increases of protein level in BALF, reduced body weight, and histological examination showed atelectasis, emphysema and hemorrhages. A narrow interval between the no-effect level (16.1 mg/m(3)) and lethal concentrations (18.4 mg/m(3)) was observed. The alkylsilane based product (NFP 2) had no effect at the concentrations studied. Experiments with different types of perfluorinated silanes and siloxanes showed that the toxic effects did not arise solely from the perfluorination. The number of free hydroxyl groups in the silanes/siloxanes was also critical for the toxicity. | 20348230
 |
Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Bedogni F, Hodge RD, Elsen GE, Nelson BR, Daza RA, Beyer RP, Bammler TK, Rubenstein JL, Hevner RF Proc Natl Acad Sci U S A
107
13129-34. Epub 2010 Jul 6.
2010
Show Abstract
Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons. Full Text Article | 20615956
 |
Interneurons of the cerebellar cortex toggle Purkinje cells between up and down states. Oldfield CS, Marty A, Stell BM Proc Natl Acad Sci U S A
107
13153-8. Epub 2010 Jul 6.
2010
Show Abstract
We demonstrate that single interneurons can toggle the output neurons of the cerebellar cortex (the Purkinje cells) between their two states. The firing of Purkinje cells has previously been shown to alternate between an "up" state in which the cell fires spontaneous action potentials and a silent "down" state. We show here that small hyperpolarizing currents in Purkinje cells can bidirectionally toggle Purkinje cells between down and up states and that blockade of the hyperpolarization-activated cation channels (H channels) with the specific antagonist ZD7288 (10 microM) blocks the transitions from down to up states. Likewise, hyperpolarizing inhibitory postsnyaptic potentials (IPSPs) produced by small bursts of action potentials (10 action potentials at 50 Hz) in molecular-layer interneurons induce these bidirectional transitions in Purkinje cells. Furthermore, single interneurons in paired interneuron --> Purkinje cell recordings, produce bidirectional switches between the two states of Purkinje cells. The ability of molecular-layer interneurons to toggle Purkinje cells occurs when Purkinje cells are recorded under whole-cell patch-clamp conditions as well as when action potentials are recorded in an extracellular loose cell-attached configuration. The mode switch demonstrated here indicates that a single presynaptic interneuron can have opposite effects on the output of a given Purkinje cell, which introduces a unique type of synaptic interaction that may play an important role in cerebellar signaling. Full Text Article | 20615960
 |
Genome-wide analysis of DNA binding and transcriptional regulation by the mammalian Doublesex homolog DMRT1 in the juvenile testis. Murphy MW, Sarver AL, Rice D, Hatzi K, Ye K, Melnick A, Heckert LL, Zarkower D, Bardwell VJ Proc Natl Acad Sci U S A
2010
Show Abstract
The DM domain proteins Doublesex- and MAB-3-related transcription factors (DMRTs) are widely conserved in metazoan sex determination and sexual differentiation. One of these proteins, DMRT1, plays diverse and essential roles in development of the vertebrate testis. In mammals DMRT1 is expressed and required in both germ cells and their supporting Sertoli cells. Despite its critical role in testicular development, little is known about how DMRT1 functions as a transcription factor or what genes it binds and regulates. We combined ChIP methods with conditional gene targeting and mRNA expression analysis and identified almost 1,400 promoter-proximal regions bound by DMRT1 in the juvenile mouse testis and determined how expression of the associated mRNAs is affected when Dmrt1 is selectively mutated in germ cells or Sertoli cells. These analyses revealed that DMRT1 is a bifunctional transcriptional regulator, activating some genes and repressing others. ChIP analysis using conditional mutant testes showed that DNA binding and transcriptional regulation of individual target genes can differ between germ cells and Sertoli cells. Genes bound by DMRT1 in vivo were enriched for a motif closely resembling the sequence DMRT1 prefers in vitro. Differential response of genes to loss of DMRT1 corresponded to differences in the enriched motif, suggesting that other transacting factors may modulate DMRT1 activity. DMRT1 bound its own promoter and those of six other Dmrt genes, indicating auto- and cross-regulation of these genes. Many of the DMRT1 target genes identified here are known to be important for a variety of functions in testicular development; the others are candidates for further investigation. | 20616082
 |
Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT Hum Mol Genet
2010
Show Abstract
Mutations in glucose transporter 10 (GLUT10) alter angiogenesis and cause arterial tortuosity syndrome (ATS); however, the mechanisms by which these mutations cause disease remain unclear. It has been reported that in most cells, mitochondria are the major source of reactive oxygen species (ROS). Moreover, mitochondria are known to incorporate as well as recycle vitamin C, which plays a critical role in redox homeostasis, although the molecular mechanism(s) underlying mitochondrial vitamin C uptake are poorly understood. We report here that GLUT10 localizes predominantly to the mitochondria of smooth muscle cells and insulin-stimulated adipocytes, where GLUT10 is highly expressed. We further demonstrate that GLUT10 facilitates transport of l-dehydroascorbic acid (DHA), the oxidized form of vitamin C, into mitochondria, and also increases cellular uptake of DHA, which in turn protects cells against oxidative stress. This protection is compromised when GLUT10 expression in mitochondria is inhibited. In addition, we found that aortic smooth muscle cells from GLUT10-mutant mice have higher ROS levels than those from wild-type mice. Our results identify the physiological role of GLUT10 as the mitochondrial DHA transporter, and demonstrate that GLUT10 protects cells from oxidative injury. Furthermore, our findings provide a mechanism to explain the ascorbate in mitochondria and show how loss-of-function GLUT10 mutations may lead to arterial abnormalities in ATS. These results also reinforce the importance of vitamin C and ROS in degenerative diseases. | 20639396
 |
T-cell phenotype in protocol renal biopsy from transplant recipients treated with Belatacept-mediated co-stimulatory blockade. Grimbert P, Audard V, Diet C, Matignon M, Plonquet A, Mansour H, Desvaux D, Durrbach A, Cohen JL, Lang P Nephrol Dial Transplant
2010
Show Abstract
BACKGROUND: Belatacept is thought to disrupt the interaction between CD80/86 and CD28, thus preventing T-cell activation by blocking the co-stimulatory second signal. However, the consequences on the T-cell profile in human renal transplant cases have not been determined. | 20667993
 |
Exposure to bioaerosols during the growth season in an organic greenhouse tomato production using Supresivit(R) (Trichoderma harzianum) and Mycostop(R) (Streptomyces griseoviridis). Hansen VM, Winding A, Madsen AM Appl Environ Microbiol
2010
Show Abstract
In working environments, especially in confined spaces like greenhouses, elevated concentrations of airborne microorganisms may become a problem for workers' health. Additionally, the use of microbial pest control agents may increase exposure to microorganisms. The aim of this study was to investigate tomato growers' exposure to naturally occurring bioaerosol components (dust, bacteria, fungi, actinomycetes, (1-->3)-beta-D-glucans and endotoxin) and microbial pest control agents applied by drip irrigation. Airborne dust was collected with filter samplers and analyzed for microorganisms by plate counts and total counts in microscope. Analysis of (1-->3)-beta-D-glucan and endotoxin content were performed by kinetic, chromatic Limulus Amoebocyte Lysate tests. The fungal strain (Trichoderma harzianum) from the biocontrol product Supresivit(R) was identified by PCR analysis. Measurements were performed on the day of drip irrigation and one week, one month and three months after the irrigation. T. harzianum from Supresivit(R) could only be detected on the day of treatment. Streptomyces griseoviridis, an applied microbial pest control agent, was not detected in the air during this investigation. We found that bioaerosol exposure increases during the growth season and that exposure to fungi, bacteria, and endotoxin can reach levels during the harvest period, that may cause respiratory symptoms in growers. The collected data indicates that MPCAs applied by drip irrigation do not become airborne later in the season. | 20622135
 |
Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1. Mehlitz A, Banhart S, Mäurer AP, Kaushansky A, Gordus AG, Zielecki J, Macbeath G, Meyer TF J Cell Biol
190
143-57.
2010
Show Abstract
Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp's strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor-induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis-induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection. | 20624904
 |