Apolipoprotein A-IV is a novel substrate for matrix metalloproteinases. Ji Yoon Park,Jun Hyoung Park,Wookju Jang,In-Kwan Hwang,In Ja Kim,Hwa-Jung Kim,Kyung-Hyun Cho,Seung-Taek Lee Journal of biochemistry
151
2012
概要を表示する
Screening of matrix metalloproteinase (MMP)-14 substrates in human plasma using a proteomics approach previously identified apolipoprotein A-IV (apoA-IV) as a novel substrate for MMP-14. Here, we show that among the tested MMPs, purified apoA-IV is most susceptible to cleavage by MMP-7, and that apoA-IV in plasma can be cleaved more efficiently by MMP-7 than MMP-14. Purified recombinant apoA-IV (44-kDa) was cleaved by MMP-7 into several fragments of 41, 32, 29, 27, 24, 22 and 19 kDa. N-terminal sequencing of the fragments identified two internal cleavage sites for MMP-7 in the apoA-IV sequence, between Glu(185) and Leu(186), and between Glu(262) and Leu(263). The cleavage of lipid-bound apoA-IV by MMP-7 was less efficient than that of lipid-free apoA-IV. Further, MMP-7-mediated cleavage of apoA-IV resulted in a rapid loss of its intrinsic anti-oxidant activity. Based on the fact that apoA-IV plays important roles in lipid metabolism and possesses anti-oxidant activity, we suggest that cleavage of lipid-free apoA-IV by MMP-7 has pathological implications in the development of hyperlipidemia and atherosclerosis. | 22170214
|
Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Lutolf, Matthias P, et al. Nat. Biotechnol., 21: 513-8 (2003)
2003
概要を表示する
We have engineered synthetic poly(ethylene glycol) (PEG)-based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase (MMP) as linkers between PEG chains. Primary human fibroblasts were shown to migrate within these matrices by integrin- and MMP-dependent mechanisms. Gels used to deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) to the site of critical- sized defects in rat crania were completely infiltrated by cells and were remodeled into bony tissue within five weeks. Bone regeneration was dependent on the proteolytic sensitivity of the matrices and their architecture. The cell-mediated proteolytic invasiveness of the gels and entrapment of rhBMP-2 resulted in efficient and highly localized bone regeneration. | 12704396
|