Spinal changes of a newly isolated neuropeptide endomorphin-2 concomitant with vincristine-induced allodynia. Yang, Y; Zhang, YG; Lin, GA; Xie, HQ; Pan, HT; Huang, BQ; Liu, JD; Liu, H; Zhang, N; Li, L; Chen, JH PloS one
9
e89583
2014
概要を表示する
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain unclear. There is increasing evidence implicating the involvement of spinal endomorphin-2 (EM2) in neuropathic pain. In this study, we used a vincristine-evoked rat CNP model displaying mechanical allodynia and central sensitization, and observed a significant decrease in the expression of spinal EM2 in CNP. Also, while intrathecal administration of exogenous EM2 attenuated allodynia and central sensitization, the mu-opioid receptor antagonist β-funaltrexamine facilitated these events. We found that the reduction in spinal EM2 was mediated by increased activity of dipeptidylpeptidase IV, possibly as a consequence of chemotherapy-induced oxidative stress. Taken together, our findings suggest that a decrease in spinal EM2 expression causes the loss of endogenous analgesia and leads to enhanced pain sensation in CNP. | Immunohistochemistry | 24586889
|
Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the seasonal Siberian hamster (Phodopus sungorus). Michael Helwig,Zoë A Archer,Gerhard Heldmaier,Alexander Tups,Julian G Mercer,Martin Klingenspor Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
195
2009
概要を表示する
Central regulation of energy balance in seasonal mammals such as the Siberian hamster is dependent on the precise integration of short-term satiety information arising from the gastrointestinal tract with long-term signals on the status of available energy reserves (e.g. leptin) and prevailing photoperiod. Within the central nervous system, the brainstem nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN) are major relay nuclei that transmit information from the gastrointestinal tract to higher forebrain centres. We extended studies on the seasonal programming of the hypothalamus to examine the effect of the photoperiod on neuropeptidergic circuitries of this gut-brain axis. In the NTS and PBN we performed gene expression and immunoreactivity (-ir) studies on selected satiety-related neuropeptides and receptors: alpha-melanocyte stimulating hormone, melanocortin-3 receptor, melanocortin-4 receptor (MC4-R), growth hormone secretagogue-receptor, cocaine- and amphetamine-regulated transcript, preproglucagon (PPG), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY, galanin, neurotensin, and corticotrophin releasing hormone (CRH). Gene expression of PPG and MC4-R, and -ir of CCK and GLP-1, in the NTS were up-regulated after 14 weeks in long-day photoperiod (16 h light:8 h dark) compared to short-days (8 h light:16 h dark), whereas CRH-ir and NT-ir were increased in short-days within the PBN. We suggest that brainstem neuroendocrine mechanisms contribute to the long-term regulation of body mass in the Siberian hamster by a photoperiod-related modulation of satiety signalling. | | 19347341
|
PC1/3 and PC2 gene expression and post-translational endoproteolytic pro-opiomelanocortin processing is regulated by photoperiod in the seasonal Siberian hamster (Phodopus sungorus). M Helwig, R M H Khorooshi, A Tups, P Barrett, Z A Archer, C Exner, J Rozman, L J Braulke, J G Mercer, M Klingenspor Journal of neuroendocrinology
18
413-25
2006
概要を表示する
A remarkable feature of the seasonal adaptation displayed by the Siberian hamster (Phodopus sungorus) is the ability to decrease food intake and body weight (by up to 40%) in response to shortening photoperiod. The regulating neuroendocrine systems involved in this adaptation and their neuroanatomical and molecular bases are poorly understood. We investigated the effect of photoperiod on the expression of prohormone convertases 1 (PC1/3) and 2 (PC2) and the endoproteolytic processing of the neuropeptide precursor pro-opiomelanocortin (POMC) within key energy balance regulating centres of the hypothalamus. We compared mRNA levels and protein distribution of PC1/3, PC2, POMC, adrenocorticotrophic hormone (ACTH), alpha-melanocyte-stimulating hormone (MSH), beta-endorphin and orexin-A in selected hypothalamic areas of long day (LD, 16:8 h light:dark), short day (SD, 8:16 h light:dark) and natural-day (ND, photoperiod depending on time of the year) acclimated Siberian hamsters. The gene expression of PC2 was significantly higher within the arcuate nucleus (ARC, P 0.01) in SD and in ND (versus LD), and is reflected in the day length profile between October and April in the latter. PC1/3 gene expression in the ARC and lateral hypothalamus was higher in ND but not in SD compared to the respective LD controls. The immunoreactivity of PC1/3 cleaved neuropeptide ACTH in the ARC and PC1/3-colocalised orexin-A in the lateral hypothalamus were not affected by photoperiod changes. However, increased levels of PC2 mRNA and protein were associated with higher abundance of the mature neuropeptides alpha-MSH and beta-endorphin (P 0.01) in SD. This study provides a possible explanation for previous paradoxical findings showing lower food intake in SD associated with decreased POMC mRNA levels. Our results suggest that a major part of neuroendocrine body weight control in seasonal adaptation may be effected by post-translational processing mediated by the prohormone convertases PC1/3 and PC2, in addition to regulation of gene expression of neuropeptide precursors. | | 16684131
|
Immunohistochemical localization of monoamine oxidase type B in pancreatic islets of the rat. Huang, YH; Ito, A; Arai, R The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
53
1149-58
2005
概要を表示する
Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells. | | 15923360
|
Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells. Y H Huang,M J Sun,M Jiang,B Y Fu European journal of histochemistry : EJH
53
2001
概要を表示する
We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP) in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells) and PP-cells (PP-secreting cells) were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells. | | 19683981
|