Novel Function of Rev-erbα in Promoting Brown Adipogenesis. Nam, D; Chatterjee, S; Yin, H; Liu, R; Lee, J; Yechoor, VK; Ma, K Scientific reports
5
11239
2015
概要を表示する
Brown adipose tissue is a major thermogenic organ that plays a key role in maintenance of body temperature and whole-body energy homeostasis. Rev-erbα, a ligand-dependent nuclear receptor and transcription repressor of the molecular clock, has been implicated in the regulation of adipogenesis. However, whether Rev-erbα participates in brown fat formation is not known. Here we show that Rev-erbα is a key regulator of brown adipose tissue development by promoting brown adipogenesis. Genetic ablation of Rev-erbα in mice severely impairs embryonic and neonatal brown fat formation accompanied by loss of brown identity. This defect is due to a cell-autonomous function of Rev-erbα in brown adipocyte lineage commitment and terminal differentiation, as demonstrated by genetic loss- and gain-of-function studies in mesenchymal precursors and brown preadipocytes. Moreover, pharmacological activation of Rev-erbα activity promotes, whereas its inhibition suppresses brown adipocyte differentiation. Mechanistic investigations reveal that Rev-erbα represses key components of the TGF-β cascade, an inhibitory pathway of brown fat development. Collectively, our findings delineate a novel role of Rev-erbα in driving brown adipocyte development, and provide experimental evidence that pharmacological interventions of Rev-erbα may offer new avenues for the treatment of obesity and related metabolic disorders. | | 26058812
|
Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Yoshida, T; Ozawa, Y; Kimura, T; Sato, Y; Kuznetsov, G; Xu, S; Uesugi, M; Agoulnik, S; Taylor, N; Funahashi, Y; Matsui, J British journal of cancer
110
1497-505
2014
概要を表示する
Eribulin mesilate (eribulin), a non-taxane microtubule dynamics inhibitor, has shown trends towards greater overall survival (OS) compared with progression-free survival in late-stage metastatic breast cancer patients in the clinic. This finding suggests that eribulin may have additional, previously unrecognised antitumour mechanisms beyond its established antimitotic activity. To investigate this possibility, eribulin's effects on the balance between epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) in human breast cancer cells were investigated.Triple negative breast cancer (TNBC) cells, which are oestrogen receptor (ER-)/progesterone receptor (PR-)/human epithelial growth receptor 2 (HER2-) and have a mesenchymal phenotype, were treated with eribulin for 7 days, followed by measurement of EMT-related gene and protein expression changes in the surviving cells by quantitative real-time PCR (qPCR) and immunoblot, respectively. In addition, proliferation, migration, and invasion assays were also conducted in eribulin-treated cells. To investigate the effects of eribulin on TGF-β/Smad signalling, the phosphorylation status of Smad proteins was analysed. In vivo, the EMT/MET status of TNBC xenografts in mice treated with eribulin was examined by qPCR, immunoblot, and immunohistochemical analysis. Finally, an experimental lung metastasis model was utilised to gauge the metastatic activity of eribulin-treated TNBC in the in vivo setting.Treatment of TNBC cells with eribulin in vitro led to morphological changes consistent with transition from a mesenchymal to an epithelial phenotype. Expression analyses of EMT markers showed that eribulin treatment led to decreased expression of several mesenchymal marker genes, together with increased expression of several epithelial markers. In the TGF-β induced EMT model, eribulin treatment reversed EMT, coincident with inhibition of Smad2 and Smad3 phosphorylation. Consistent with these changes, TNBC cells treated with eribulin for 7 days showed decreased capacity for in vitro migration and invasiveness. In in vivo xenograft models, eribulin treatment reversed EMT and induced MET as assessed by qPCR, immunoblot, and immunohistochemical analyses of epithelial and mesenchymal marker proteins. Finally, surviving TNBC cells pretreated in vitro with eribulin for 7 days led to decreased numbers of lung metastasis when assessed in an in vivo experimental metastasis model.Eribulin exerted significant effects on EMT/MET-related pathway components in human breast cancer cells in vitro and in vivo, consistent with a phenotypic switch from mesenchymal to epithelial states, and corresponding to observed decreases in migration and invasiveness in vitro as well as experimental metastasis in vivo. These preclinical findings may provide a plausible scientific basis for clinical observations of prolonged OS by suppression of further spread of metastasis in breast cancer patients treated with eribulin. | Western Blotting | 24569463
|
Progenitor-like traits contribute to patient survival and prognosis in oligodendroglial tumors. Ng, FS; Toh, TB; Ting, EH; Koh, GR; Sandanaraj, E; Phong, M; Wong, SS; Leong, SH; Kon, OL; Tucker-Kellogg, G; Ng, WH; Ng, I; Tang, C; Ang, BT Clinical cancer research : an official journal of the American Association for Cancer Research
18
4122-35
2012
概要を表示する
Patient-derived glioma-propagating cells (GPC) contain karyotypic and gene expression profiles that are found in the primary tumor. However, their clinical relevance is unclear. We ask whether GPCs contribute to disease progression and survival outcome in patients with glioma by analyzing gene expression profiles.We tapped into public sources of GPC gene expression data and derived a gene signature distinguishing oligodendroglial from glioblastoma multiforme (GBM) GPCs. By adapting a method in glioma biology, the Connectivity Map, we interrogated its strength of association in public clinical databases. We validated the top-ranking signaling pathways Wnt, Notch, and TGFβ, in GPCs and primary tumor specimens.We observed that patients with better prognosis correlated with oligodendroglial GPC features and lower tumor grade, and this was independent of the current clinical indicator, 1p/19q status. Patients with better prognosis had proneural tumors whereas the poorly surviving cohort had mesenchymal tumors. In addition, oligodendroglial GPCs were more sensitive to Wnt and Notch inhibition whereas GBM GPCs responded to TGFβR1 inhibition.We provide evidence that GPCs are clinically relevant. In addition, the more favorable prognosis of oligodendroglial tumors over GBM could be recapitulated transcriptomically at the GPC level, underscoring the relevance of this cellular model. Our gene signature detects molecular heterogeneity in oligodendroglial tumors that cannot be accounted for by the 1p/19q status alone, indicating that stem-like traits contribute to clinical status. Collectively, these data highlight the limitation of morphology-based histologic analyses in tumor classification, consequently impacting on treatment decisions. | | 22675171
|