Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Guglielmotto, M; Monteleone, D; Piras, A; Valsecchi, V; Tropiano, M; Ariano, S; Fornaro, M; Vercelli, A; Puyal, J; Arancio, O; Tabaton, M; Tamagno, E Autophagy
10
1827-43
2014
概要を表示する
The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies. | 25136804
|
Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance. Dai, Haiming, et al. Cancer Res., 73: 6998-7008 (2013)
2013
概要を表示する
Bcl-2 is phosphorylated on Ser(70) after treatment of cells with spindle poisons. On the basis of effects observed in cells overexpressing Bcl-2 S70E or S70A mutants, various studies have concluded that Ser(70) phosphorylation either enhances or diminishes Bcl-2 function. In the present study, the ability of phosphorylated Bcl-2, as well as the S70E and S70A mutants, to bind and neutralize proapoptotic Bcl-2 family members under cell-free conditions and in intact cells was examined in an attempt to resolve this controversy. Surface plasmon resonance indicated that phosphorylated Bcl-2, Bcl-2 S70E, and Bcl-2 S70A exhibit enhanced binding to Bim and Bak compared with unmodified Bcl-2. This enhanced binding reflected a readily detectable conformation change in the loop domain of Bcl-2. Furthermore, Bcl-2 S70E and S70A bound more Bak and Bim than wild-type Bcl-2 in pull-downs and afforded greater protection against several chemotherapeutic agents. Importantly, binding of endogenous Bcl-2 to Bim also increased during mitosis, when Bcl-2 is endogenously phosphorylated, and disruption of this mitotic Bcl-2/Bim binding with navitoclax or ABT-199, like Bcl-2 downregulation, enhanced the cytotoxicity of paclitaxel. Collectively, these results provide not only a mechanistic basis for the enhanced antiapoptotic activity of phosphorylated Bcl-2, but also an explanation for the ability of BH3 mimetics to enhance taxane sensitivity. | 24097825
|