Truncated RAF kinases drive resistance to MET inhibition in MET-addicted cancer cells. Petti, C; Picco, G; Martelli, ML; Trisolini, E; Bucci, E; Perera, T; Isella, C; Medico, E Oncotarget
6
221-33
2015
概要を表示する
Constitutively active receptor tyrosine kinases (RTKs) are known oncogenic drivers and provide valuable therapeutic targets in many cancer types. However, clinical efficacy of RTK inhibitors is limited by intrinsic and acquired resistance. To identify genes conferring resistance to inhibition of the MET RTK, we conducted a forward genetics screen in the GTL-16 gastric cancer cell line, carrying MET amplification and exquisitely sensitive to MET inhibition. Cells were transduced with three different retroviral cDNA expression libraries and selected for growth in the presence of the MET inhibitor PHA-665752. Selected cells displayed robust and reproducible enrichment of library-derived cDNAs encoding truncated forms of RAF1 and BRAF proteins, whose silencing reversed the resistant phenotype. Transduction of naïve GTL-16 cells with truncated, but not full length, RAF1 and BRAF conferred in vitro and in vivo resistance to MET inhibitors, which could be reversed by MEK inhibition. Induction of resistance by truncated RAFs was confirmed in other MET-addicted cell lines, and further extended to EGFR-addicted cells. These data show that truncated RAF1 and BRAF proteins, recently described as products of genomic rearrangements in gastric cancer and other malignancies, have the ability to render neoplastic cells resistant to RTK-targeted therapy. | | 25473895
|
Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Sonja I Gringhuis,Jeroen den Dunnen,Manja Litjens,Michiel van der Vlist,Brigitte Wevers,Sven C M Bruijns,Teunis B H Geijtenbeek Nature immunology
10
2009
概要を表示する
The C-type lectin dectin-1 activates the transcription factor NF-kappaB through a Syk kinase-dependent signaling pathway to induce antifungal immunity. Here we show that dectin-1 expressed on human dendritic cells activates not only the Syk-dependent canonical NF-kappaB subunits p65 and c-Rel, but also the noncanonical NF-kappaB subunit RelB. Dectin-1, when stimulated by the beta-glucan curdlan or by Candida albicans, induced a second signaling pathway mediated by the serine-threonine kinase Raf-1, which integrated with the Syk pathway at the point of NF-kappaB activation. Raf-1 antagonized Syk-induced RelB activation by promoting sequestration of RelB into inactive p65-RelB dimers, thereby altering T helper cell differentiation. Thus, dectin-1 activates two independent signaling pathways, one through Syk and one through Raf-1, to induce immune responses. | | 19122653
|
Filamin A-mediated down-regulation of the exchange factor Ras-GRF1 correlates with decreased matrix metalloproteinase-9 expression in human melanoma cells. Zhu, TN; He, HJ; Kole, S; D'Souza, T; Agarwal, R; Morin, PJ; Bernier, M The Journal of biological chemistry
282
14816-26
2007
概要を表示する
The actin-binding protein filamin A (FLNa) is associated with diverse cellular processes such as cell motility and signaling through its scaffolding properties. Here we examine the effect of FLNa on the regulation of signaling pathways that control the expression of matrix metalloproteinases (MMPs). The lack of FLNa in human M2 melanoma cells was associated with constitutive and phorbol ester-induced expression and secretion of active MMP-9 in the absence of MMP-2 up-regulation. M2 cells displayed stronger MMP-9 production and activity than their M2A7 counterparts where FLNa had been stably reintroduced. Using an MMP-9 promoter construct (pMMP-9-Luc), in vitro kinase assays, and genetic and pharmacological approaches, we demonstrate that FLNa mediated transcriptional down-regulation of pMMP-9-Luc by suppressing the constitutive hyperactivity of the Ras/MAPK extracellular signal-regulated kinase (ERK) cascade. Experimental evidence indicated that this phenomenon was associated with destabilization and ubiquitylation of Ras-GRF1, a guanine nucleotide exchange factor that activates H-Ras by facilitating the release of GDP. Ectopic expression of Ras-GRF1 was accompanied by ERK activation and elevated levels of MMP-9 in M2A7 cells, whereas a catalytically inactive dominant negative Ras-GRF1, which prevented ERK activation, reduced MMP-9 expression in M2 cells. Our results indicate that expression of FLNa regulates constitutive activation of the Ras/ERK pathway partly through a Ras-GRF1 mechanism to modulate the production of MMP-9. | | 17389601
|
Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Lin, L; Su, Z; Lebedeva, IV; Gupta, P; Boukerche, H; Rai, T; Barber, GN; Dent, P; Sarkar, D; Fisher, PB Cell death and differentiation
13
1982-93
2006
概要を表示する
Melanoma differentiation-associated gene-5 (mda-5) was the first molecule identified in nature whose encoded protein embodied the unique structural combination of an N-terminal caspase recruitment domain and a C-terminal DExD/H RNA helicase domain. As suggested by its structure, cumulative evidences documented that ectopic expression of mda-5 leads to growth inhibition and/or apoptosis in various cell lines. However, the signaling pathways involved in mda-5-mediated killing have not been elucidated. In this study, we utilized either genetically modified cloned rat embryo fibroblast cells overexpressing different functionally and structurally distinct oncogenes or human pancreatic and colorectal carcinoma cells containing mutant active ras to resolve the role of the Ras/Raf signaling pathway in mda-5-mediated growth inhibition/apoptosis induction. Rodent and human tumor cells containing constitutively activated Raf/Raf/MEK/ERK pathways were resistant to mda-5-induced killing and this protection was antagonized by intervening in this signal transduction cascade either by directly inhibiting ras activity using an antisense strategy or by targeting ras-downstream factors, such as MEK1/2, with the pharmacological inhibitor PD98059. The present findings provide a further example of potential cross-talk between growth-inhibitory and growth-promoting pathways in which the ultimate balance of these factors defines cellular homeostasis, leading to survival or induction of programmed cell death. | | 16575407
|
Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Odabaei, Golaun, et al. Adv. Cancer Res., 91: 169-200 (2004)
2004
概要を表示する
The acquisition of resistance to conventional therapies such as radiation and chemotherapeutic drugs remains the major obstacle in the successful treatment of cancer patients. Tumor cells acquire resistance to apoptotic stimuli and it has been demonstrated that conventional therapies exert their cytotoxic activities primarily by inducing apoptosis in the cells. Resistance to radiation and chemotherapeutic drugs has led to the development of immunotherapy and gene therapy approaches with the intent of overcoming resistance to drugs and radiation as well as enhancing the specificity to eliminate tumor cells. However, cytotoxic lymphocytes primarily kill by apoptosis and, therefore, drug-resistant tumor cells may also be cross-resistant to immunotherapy. To evade apoptosis, tumor cells have adopted various mechanisms that interfere with the apoptotic signaling pathways and promote constitutive activation of cellular proliferation and survival pathways. Thus, modifications of the antiapoptotic genes in cancer cells are warranted for the effectiveness of conventional therapies as well as novel immunotherapeutic approaches. Such modifications will avert the resistant phenotype of the tumor cells and will render them susceptible to apoptosis. Current studies, both in vitro and preclinically in vivo, have been aimed at the modification and regulation of expression of apoptosis-related gene products and their activities. A novel protein designated Raf-1 kinase inhibitor protein (RKIP) has been partially characterized. RKIP is a member of the phosphatidylethanolamine-binding protein family. RKIP has been shown to disrupt the Raf-1-MEK1/2 [mitogen-activated protein kinase-ERK (extracellular signal-regulated kinase) kinase-1/2]-ERK1/2 and NF-kappaB signaling pathways, via physical interaction with Raf-1-MEK1/2 and NF-kappaB-inducing kinase or transforming growth factor beta-activated kinase-1, respectively, thereby abrogating the survival and antiapoptotic properties of these signaling pathways. In addition, RKIP has been shown to act as a signal modifier that enhances receptor signaling by inhibiting G protein-coupled receptor kinase-2. By regulating cell signaling, growth, and survival through its expression and activity, RKIP is considered to play a pivotal role in cancer, regulating apoptosis induced by drugs or immune-mediated stimuli. Overexpression of RKIP sensitizes tumor cells to chemotherapeutic drug-induced apoptosis. Also, induction of RKIP by drugs or anti-receptor antibodies sensitizes cancer cells to drug-induced apoptosis. In this review, we discuss the discovery, structure, function, and significance of RKIP in cancer. | | 15327891
|
Involvement of the ERK signaling cascade in protein kinase C-mediated cell cycle arrest in intestinal epithelial cells. Clark, Jennifer A, et al. J. Biol. Chem., 279: 9233-47 (2004)
2004
概要を表示する
We have reported previously that protein kinase C (PKC) signaling can mediate a program of cell cycle withdrawal in IEC-18 nontransformed intestinal crypt cells, involving rapid disappearance of cyclin D1, increased expression of Cip/Kip cyclin-dependent kinase inhibitors, and activation of the growth suppressor function of pocket proteins. In the current study, we present evidence to support a requisite role for PKC alpha in mediating these effects. Furthermore, analysis of the signaling events linking PKC/PKC alpha activation to changes in the cell cycle regulatory machinery implicate the Ras/Raf/MEK/ERK cascade. PKC/PKC alpha activity promoted GTP loading of Ras, activation of Raf-1, and phosphorylation/activation of ERK. ERK activation was found to be required for critical downstream effects of PKC/PKC alpha activation, including cyclin D1 down-regulation, p21(Waf1/Cip1) induction, and cell cycle arrest. PKC-induced ERK activation was strong and sustained relative to that produced by proliferative signals, and the growth inhibitory effects of PKC agonists were dominant over proliferative events when these opposing stimuli were administered simultaneously. PKC signaling promoted cytoplasmic and nuclear accumulation of ERK activity, whereas growth factor-induced phospho-ERK was localized only in the cytoplasm. Comparison of the effects of PKC agonists that differ in their ability to sustain PKC alpha activation and growth arrest in IEC-18 cells, together with the use of selective kinase inhibitors, indicated that the length of PKC-mediated cell cycle exit is dictated by the magnitude/duration of input signal (i.e. PKC alpha activity) and of activation of the ERK cascade. The extent/duration of phospho-ERK nuclear localization may also be important determinants of the duration of PKC agonist-induced growth arrest in this system. Taken together, the data point to PKC alpha and the Ras/Raf/MEK/ERK cascade as key regulators of cell cycle withdrawal in intestinal epithelial cells. | Activation Assay | 14670956
|
Untying the regulation of the Raf-1 kinase. Dhillon, Amardeep S and Kolch, Walter Arch. Biochem. Biophys., 404: 3-9 (2002)
2002
概要を表示する
The Raf-1 kinase is the entry point to the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK-1/2) signaling pathway, which controls fundamental cellular functions including proliferation, differentiation, and survival. As such, Raf-1 is regulated by complex mechanisms that are incompletely understood. Recent results have shown that release from repression is an important event that facilitates the interaction of Raf-1 with the Ras activator and its substrate, MAPK/ERK-1/2 kinase. A number of distinct activation steps contribute in a combinatorial fashion to regulate and adjust Raf-1 activity. The efficiency of downstream signal transmission is modulated by protein:protein interactions, and new data consolidate an important role for kinase suppressor of ras (KSR) as a scaffolding protein. KSR is a dynamic scaffold whose function and localization is regulated by phosphorylation. | | 12127063
|
Design and discovery of small molecules targeting raf-1 kinase. Lowinger, Timothy B, et al. Curr. Pharm. Des., 8: 2269-78 (2002)
2002
概要を表示する
Raf kinase, an enzyme which acts downstream in the Ras signaling pathway, is involved in cancerous cell proliferation. Thus, small molecule inhibitors of Raf kinase activity may be important agents for the treatment of cancer. A novel class of Raf-1 inhibitors was discovered, using a combination of medicinal and combinatorial chemistry approaches. This effort culminated in the identification of the clinical candidate BAY 43-9006, currently undergoing Phase I clinical trials. The present review summarizes the medicinal chemistry development of ureas as highly potent inhibitors of Raf-1 kinase. | | 12369855
|