P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development. Dahlberg, O; Shilkova, O; Tang, M; Holmqvist, PH; Mannervik, M PLoS genetics
11
e1004971
2015
概要を表示する
Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3' end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. | | | 25679530
|
Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. Schubert, V; Weisshart, K Journal of experimental botany
66
1687-98
2015
概要を表示する
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic protein-coding genes. Analysing the topological distribution and quantification of RNAPII can contribute to understanding its function in interphase nuclei. Previously it was shown that RNAPII molecules in plant nuclei form reticulate structures within euchromatin of differentiated Arabidopsis thaliana nuclei rather than being organized in distinct 'transcription factories' as observed in mammalian nuclei. Immunosignal intensity measurements based on specific antibody labelling in maximum intensity projections of image stacks acquired by structured illumination microscopy (SIM) suggested a relative proportional increase of RNAPII in endopolyploid plant nuclei. Here, photoactivated localization microscopy (PALM) was applied to determine the absolute number and distribution of active and inactive RNAPII molecules in differentiated A. thaliana nuclei. The proportional increase of RNAPII during endopolyploidization is confirmed, but it is also shown that PALM measurements are more reliable than those based on SIM in terms of quantification. The single molecule localization results show that, although RNAPII molecules are globally dispersed within plant euchromatin, they also aggregate within smaller distances as described for mammalian transcription factories. | | | 25740920
|
Genome-wide binding of MBD2 reveals strong preference for highly methylated loci. Menafra, R; Brinkman, AB; Matarese, F; Franci, G; Bartels, SJ; Nguyen, L; Shimbo, T; Wade, PA; Hubner, NC; Stunnenberg, HG PloS one
9
e99603
2014
概要を表示する
MBD2 is a subunit of the NuRD complex that is postulated to mediate gene repression via recruitment of the complex to methylated DNA. In this study we adopted an MBD2 tagging-approach to study its genome wide binding characteristics. We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. Interestingly, MBD2 binds around 1 kb downstream of the transcription start site of a subset of ∼ 400 CpG island promoters that are characterized by the presence of active histone marks, RNA polymerase II (Pol2) and low to medium gene expression levels and H3K36me3 deposition. These tagged-MBD2 binding sites in MCF-7 show increased methylation in a cohort of primary breast cancers but not in normal breast samples, suggesting a putative role for MBD2 in breast cancer. | | Human | 24927503
|
H2B ubiquitylation modulates spliceosome assembly and function in budding yeast. Hérissant, L; Moehle, EA; Bertaccini, D; Van Dorsselaer, A; Schaeffer-Reiss, C; Guthrie, C; Dargemont, C Biology of the cell / under the auspices of the European Cell Biology Organization
106
126-38
2014
概要を表示する
Commitment to splicing occurs co-transcriptionally, but a major unanswered question is the extent to which various modifications of chromatin, the template for transcription in vivo, contribute to the regulation of splicing.Here, we perform genome-wide analyses showing that inhibition of specific marks - H2B ubiquitylation, H3K4 methylation and H3K36 methylation - perturbs splicing in budding yeast, with each modification exerting gene-specific effects. Furthermore, semi-quantitative mass spectrometry on purified nuclear mRNPs and chromatin immunoprecipitation analysis on intron-containing genes indicated that H2B ubiquitylation, but not Set1-, Set2- or Dot1-dependent H3 methylation, stimulates recruitment of the early splicing factors, namely U1 and U2 snRNPs, onto nascent RNAs.These results suggest that histone modifications impact splicing of distinct subsets of genes using distinct pathways. | | | 24476359
|
The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Dürr, J; Lolas, IB; Sørensen, BB; Schubert, V; Houben, A; Melzer, M; Deutzmann, R; Grasser, M; Grasser, KD Nucleic acids research
42
4332-47
2014
概要を表示する
The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4-RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4-RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes. | | | 24497194
|
Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins. Pradeepa, MM; Grimes, GR; Taylor, GC; Sutherland, HG; Bickmore, WA Nucleic acids research
42
9021-32
2014
概要を表示する
Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax family member MLL (myeloid/lymphoid or mixed-lineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins to HOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1(-/-) cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors. | | | 25056311
|
Timing of transcriptional quiescence during gametogenesis is controlled by global histone H3K4 demethylation. Xu, M; Soloveychik, M; Ranger, M; Schertzberg, M; Shah, Z; Raisner, R; Venkatasubrahmanyan, S; Tsui, K; Gebbia, M; Hughes, T; van Bakel, H; Nislow, C; Madhani, HD; Meneghini, MD Developmental cell
23
1059-71
2012
概要を表示する
Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny. | Western Blotting | | 23123093
|
Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Clemente-Blanco, Andres, et al. Nat. Cell Biol., 13: 1450-6 (2011)
2011
概要を表示する
Kinases and phosphatases regulate messenger RNA synthesis through post-translational modification of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (ref. 1). In yeast, the phosphatase Cdc14 is required for mitotic exit(2,3) and for segregation of repetitive regions(4). Cdc14 is also a subunit of the silencing complex RENT (refs 5,6), but no roles in transcriptional repression have been described. Here we report that inactivation of Cdc14 causes silencing defects at the intergenic spacer sequences of ribosomal genes during interphase and at Y' repeats in subtelomeric regions during mitosis. We show that the role of Cdc14 in silencing is independent of the RENT deacetylase subunit Sir2. Instead, Cdc14 acts directly on RNA polymerase II by targeting CTD phosphorylation at Ser 2 and Ser 5. We also find that the role of Cdc14 as a CTD phosphatase is conserved in humans. Finally, telomere segregation defects in cdc14 mutants(4) correlate with the presence of subtelomeric Y' elements and can be rescued by transcriptional inhibition of RNA polymerase II. | | | 22020438
|