Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Li, J; Ren, J; Liu, X; Jiang, L; He, W; Yuan, W; Yang, J; Dai, C Kidney international
88
515-27
2015
概要を表示する
The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases. | | 25970154
|
Phosphatidylinositol 3-kinase signaling determines kidney size. Chen, JK; Nagai, K; Chen, J; Plieth, D; Hino, M; Xu, J; Sha, F; Ikizler, TA; Quarles, CC; Threadgill, DW; Neilson, EG; Harris, RC The Journal of clinical investigation
125
2429-44
2015
概要を表示する
Kidney size adaptively increases as mammals grow and in response to the loss of 1 kidney. It is not clear how kidneys size themselves or if the processes that adapt kidney mass to lean body mass also mediate renal hypertrophy following unilateral nephrectomy (UNX). Here, we demonstrated that mice harboring a proximal tubule-specific deletion of Pten (Pten(ptKO)) have greatly enlarged kidneys as the result of persistent activation of the class I PI3K/mTORC2/AKT pathway and an increase of the antiproliferative signals p21(Cip1/WAF) and p27(Kip1). Administration of rapamycin to Pten(ptKO) mice diminished hypertrophy. Proximal tubule-specific deletion of Egfr in Pten(ptKO) mice also attenuated class I PI3K/mTORC2/AKT signaling and reduced the size of enlarged kidneys. In Pten(ptKO) mice, UNX further increased mTORC1 activation and hypertrophy in the remaining kidney; however, mTORC2-dependent AKT phosphorylation did not increase further in the remaining kidney of Pten(ptKO) mice, nor was it induced in the remaining kidney of WT mice. After UNX, renal blood flow and amino acid delivery to the remaining kidney rose abruptly, followed by increased amino acid content and activation of a class III PI3K/mTORC1/S6K1 pathway. Thus, our findings demonstrate context-dependent roles for EGFR-modulated class I PI3K/mTORC2/AKT signaling in the normal adaptation of kidney size and PTEN-independent, nutrient-dependent class III PI3K/mTORC1/S6K1 signaling in the compensatory enlargement of the remaining kidney following UNX. | | 25985273
|
Revealing cytokine-induced changes in the extracellular matrix with secondary ion mass spectrometry. Taylor, AJ; Ratner, BD; Buttery, LD; Alexander, MR Acta biomaterialia
14
70-83
2015
概要を表示する
Cell-secreted matrices (CSMs), where extracellular matrix (ECM) deposited by monolayer cell cultures is decellularized, have been increasingly used to produce surfaces that may be reseeded with cells. Such surfaces are useful to help us understand cell-ECM interactions in a microenvironment closer to the in vivo situation than synthetic substrates with adsorbed proteins. We describe the production of CSMs from mouse primary osteoblasts (mPObs) exposed to cytokine challenge during matrix secretion, mimicking in vivo inflammatory environments. Time-of-flight secondary ion mass spectrometry data revealed that CSMs with cytokine challenge at day 7 or 12 of culture can be chemically distinguished from one another and from untreated CSM using multivariate analysis. Comparison of the differences with reference spectra from adsorbed protein mixtures points towards cytokine challenge resulting in a decrease in collagen content. This is supported by immunocytochemical and histological staining, demonstrating a 44% loss of collagen mass and a 32% loss in collagen I coverage. CSM surfaces demonstrate greater cell adhesion than adsorbed ECM proteins. When mPObs were reseeded onto cytokine-challenged CSMs they exhibited reduced adhesion and elongated morphology compared to untreated CSMs. Such changes may direct subsequent cell fate and function, and provide insights into pathological responses at sites of inflammation. | | 25523877
|
L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. Oujo, B; Muñoz-Félix, JM; Arévalo, M; Núñez-Gómez, E; Pérez-Roque, L; Pericacho, M; González-Núñez, M; Langa, C; Martínez-Salgado, C; Perez-Barriocanal, F; Bernabeu, C; Lopez-Novoa, JM PloS one
9
e110365
2014
概要を表示する
Transforming growth factor-β (TGF-β) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development. | Western Blotting | 25313562
|
Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties. Mienaltowski, MJ; Adams, SM; Birk, DE Stem cell research & therapy
5
86
2014
概要を表示する
Multipotent progenitor populations exist within the tendon proper and peritenon of the Achilles tendon. Progenitor populations derived from the tendon proper and peritenon are enriched with distinct cell types that are distinguished by expression of markers of tendon and vascular or pericyte origins, respectively. The objective of this study was to discern the unique tenogenic properties of tendon proper- and peritenon-derived progenitors within an in vitro model. We hypothesized that progenitors from each region contribute differently to tendon formation; thus, when incorporated into a regenerative model, progenitors from each region will respond uniquely. Moreover, we hypothesized that cell populations like progenitors were capable of stimulating tenogenic differentiation, so we generated conditioned media from these cell types to analyze their stimulatory potentials.Isolated progenitors were seeded within fibrinogen/thrombin gel-based constructs with or without supplementation with recombinant growth/differentiation factor-5 (GDF5). Early and late in culture, gene expression of differentiation markers and matrix assembly genes was analyzed. Tendon construct ultrastructure was also compared after 45 days. Moreover, conditioned media from tendon proper-derived progenitors, peritenon-derived progenitors, or tenocytes was applied to each of the three cell types to determine paracrine stimulatory effects of the factors secreted from each of the respective cell types.The cell orientation, extracellular domain and fibril organization of constructs were comparable to embryonic tendon. The tendon proper-derived progenitors produced a more tendon-like construct than the peritenon-derived progenitors. Seeded tendon proper-derived progenitors expressed greater levels of tenogenic markers and matrix assembly genes, relative to peritenon-derived progenitors. However, GDF5 supplementation improved expression of matrix assembly genes in peritenon progenitors and structurally led to increased mean fibril diameters. It also was found that peritenon-derived progenitors secrete factor(s) stimulatory to tenocytes and tendon proper progenitors.Data demonstrate that, relative to peritenon-derived progenitors, tendon proper progenitors have greater potential for forming functional tendon-like tissue. Furthermore, factors secreted by peritenon-derived progenitors suggest a trophic role for this cell type as well. Thus, these findings highlight the synergistic potential of including these progenitor populations in restorative tendon engineering strategies. | | 25005797
|
Fibroblast α11β1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids. Lu, N; Karlsen, TV; Reed, RK; Kusche-Gullberg, M; Gullberg, D PloS one
9
e103173
2014
概要を表示する
We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy. | | 25076207
|
Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. Zhou, X; von der Mark, K; Henry, S; Norton, W; Adams, H; de Crombrugghe, B PLoS genetics
10
e1004820
2014
概要を表示する
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo. | | 25474590
|
Bone response to fluoride exposure is influenced by genetics. Kobayashi, CA; Leite, AL; Peres-Buzalaf, C; Carvalho, JG; Whitford, GM; Everett, ET; Siqueira, WL; Buzalaf, MA PloS one
9
e114343
2014
概要を表示する
Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR) was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; pless than 0.05). Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue. | | 25501567
|
Misexpression of Pknox2 in mouse limb bud mesenchyme perturbs zeugopod development and deltoid crest formation. Zhou, W; Zhu, H; Zhao, J; Li, H; Wan, Y; Cao, J; Zhao, H; Yu, J; Zhou, R; Yao, Y; Zhang, L; Wang, L; He, L; Ma, G; Yao, Z; Guo, X PloS one
8
e64237
2013
概要を表示する
The TALE (Three Amino acid Loop Extension) family consisting of Meis, Pbx and Pknox proteins is a group of transcriptional co-factors with atypical homeodomains that play pivotal roles in limb development. Compared to the in-depth investigations of Meis and Pbx protein functions, the role of Pknox2 in limb development remains unclear. Here, we showed that Pknox2 was mainly expressed in the zeugopod domain of the murine limb at E10.5 and E11.5. Misexpression of Pknox2 in the limb bud mesenchyme of transgenic mice led to deformities in the zeugopod and forelimb stylopod deltoid crest, but left the autopod and other stylopod skeletons largely intact. These malformations in zeugopod skeletons were recapitulated in mice overexpressing Pknox2 in osteochondroprogenitor cells. Molecular and cellular analyses indicated that the misexpression of Pknox2 in limb bud mesenchyme perturbed the Hox10-11 gene expression profiles, decreased Col2 expression and Bmp/Smad signaling activity in the limb. These results indicated that Pknox2 misexpression affected mesenchymal condensation and early chondrogenic differentiation in the zeugopod skeletons of transgenic embryos, suggesting Pknox2 as a potential regulator of zeugopod and deltoid crest formation. | | 23717575
|
Interleukin-16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction. Tamaki, S; Mano, T; Sakata, Y; Ohtani, T; Takeda, Y; Kamimura, D; Omori, Y; Tsukamoto, Y; Ikeya, Y; Kawai, M; Kumanogoh, A; Hagihara, K; Ishii, R; Higashimori, M; Kaneko, M; Hasuwa, H; Miwa, T; Yamamoto, K; Komuro, I PloS one
8
e68893
2013
概要を表示する
Chronic heart failure (CHF) with preserved left ventricular (LV) ejection fraction (HFpEF) is observed in half of all patients with CHF and carries the same poor prognosis as CHF with reduced LV ejection fraction (HFrEF). In contrast to HFrEF, there is no established therapy for HFpEF. Chronic inflammation contributes to cardiac fibrosis, a crucial factor in HFpEF; however, inflammatory mechanisms and mediators involved in the development of HFpEF remain unclear. Therefore, we sought to identify novel inflammatory mediators involved in this process.An analysis by multiplex-bead array assay revealed that serum interleukin-16 (IL-16) levels were specifically elevated in patients with HFpEF compared with HFrEF and controls. This was confirmed by enzyme-linked immunosorbent assay in HFpEF patients and controls, and serum IL-16 levels showed a significant association with indices of LV diastolic dysfunction. Serum IL-16 levels were also elevated in a rat model of HFpEF and positively correlated with LV end-diastolic pressure, lung weight and LV myocardial stiffness constant. The cardiac expression of IL-16 was upregulated in the HFpEF rat model. Enhanced cardiac expression of IL-16 in transgenic mice induced cardiac fibrosis and LV myocardial stiffening accompanied by increased macrophage infiltration. Treatment with anti-IL-16 neutralizing antibody ameliorated cardiac fibrosis in the mouse model of angiotensin II-induced hypertension.Our data indicate that IL-16 is a mediator of LV myocardial fibrosis and stiffening in HFpEF, and that the blockade of IL-16 could be a possible therapeutic option for HFpEF. | | 23894370
|