Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation. Huang, LQ; Zhu, GF; Deng, YY; Jiang, WQ; Fang, M; Chen, CB; Cao, W; Wen, MY; Han, YL; Zeng, HK Journal of neuroinflammation
11
102
2014
概要を表示する
Hypertonic saline (HS) has been successfully used clinically for treatment of various forms of cerebral edema. Up-regulated expression of Na-K-Cl Cotransporter 1 (NKCC1) and inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) has been demonstrated to be closely associated with the pathogenesis of cerebral edema resulting from a variety of brain injuries. This study aimed to explore if alleviation of cerebral edema by 10% HS might be effected through down-regulation of inflammatory mediator expression in the microglia, and thus result in decreased NKCC1 expression in astrocytes in the cerebral cortex bordering the ischemic core.The Sprague-Dawley (SD) rats that underwent right-sided middle cerebral artery occlusion (MCAO) were used for assessment of NKCC1, TNF-α and IL-1β expression using Western blotting, double immunofluorescence and real time RT-PCR, and the model also was used for evaluation of brain water content (BWC) and infarct size. SB203580 and SP600125, specific inhibitors of the p38 and JNK signaling pathways, were used to treat primary microglia cultures to determine whether the two signaling pathways were required for the inhibition of HS on microglia expressing and secreting TNF-α and IL-1β using Western blotting, double immunofluorescence and enzyme-linked immunosorbent assay (ELISA). The effect of TNF-α and IL-1β on NKCC1 expression in primary astrocyte cultures was determined. In addition, the direct inhibitory effect of HS on NKCC1 expression in primary astrocytes was also investigated by Western blotting, double immunofluorescence and real time RT-PCR.BWC and infarct size decreased significantly after 10% HS treatment. TNF-α and IL-1β immunoexpression in microglia was noticeably decreased. Concomitantly, NKCC1 expression in astrocytes was down-regulated. TNF-α and IL-1β released from the primary microglia subjected to hypoxic exposure and treatment with 100 mM HS were decreased. NKCC1 expression in primary astrocytes was concurrently and progressively down-regulated with decreasing concentration of exogenous TNF-α and IL-1β. Additionally, 100 mM HS directly inhibited NKCC1 up-regulation in astrocytes under hypoxic condition.The results suggest that 10% HS alleviates cerebral edema through inhibition of the NKCC1 Cotransporter, which is mediated by attenuation of TNF-α and IL-1β stimulation on NKCC1. | | 24916922
|
Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. Deng, Y; Xie, D; Fang, M; Zhu, G; Chen, C; Zeng, H; Lu, J; Charanjit, K PloS one
9
e87420
2014
概要を表示する
Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD), a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL) loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+) OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM) and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+) oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats. | | 24498101
|
A highly conserved Toxo1 haplotype directs resistance to toxoplasmosis and its associated caspase-1 dependent killing of parasite and host macrophage. Cavailles, P; Flori, P; Papapietro, O; Bisanz, C; Lagrange, D; Pilloux, L; Massera, C; Cristinelli, S; Jublot, D; Bastien, O; Loeuillet, C; Aldebert, D; Touquet, B; Fournié, GJ; Cesbron-Delauw, MF PLoS pathogens
10
e1004005
2014
概要を表示する
Natural immunity or resistance to pathogens most often relies on the genetic make-up of the host. In a LEW rat model of refractoriness to toxoplasmosis, we previously identified on chromosome 10 the Toxo1 locus that directs toxoplasmosis outcome and controls parasite spreading by a macrophage-dependent mechanism. Now, we narrowed down Toxo1 to a 891 kb interval containing 29 genes syntenic to human 17p13 region. Strikingly, Toxo1 is included in a haplotype block strictly conserved among all refractory rat strains. The sequencing of Toxo1 in nine rat strains (5 refractory and 4 susceptible) revealed resistant-restricted conserved polymorphisms displaying a distribution gradient that peaks at the bottom border of Toxo1, and highlighting the NOD-like receptor, Nlrp1a, as a major candidate. The Nlrp1 inflammasome is known to trigger, upon pathogen intracellular sensing, pyroptosis programmed-cell death involving caspase-1 activation and cleavage of IL-1β. Functional studies demonstrated that the Toxo1-dependent refractoriness in vivo correlated with both the ability of macrophages to restrict T. gondii growth and a T. gondii-induced death of intracellular parasites and its host macrophages. The parasite-induced cell death of infected macrophages bearing the LEW-Toxo1 alleles was found to exhibit pyroptosis-like features with ROS production, the activation of caspase-1 and IL1-β secretion. The pharmacological inactivation of caspase-1 using YVAD and Z-VAD inhibitors prevented the death of both intravacuolar parasites and host non-permissive macrophages but failed to restore parasite proliferation. These findings demonstrated that the Toxo1-dependent response of rat macrophages to T. gondii infection may trigger two pathways leading to the control of parasite proliferation and the death of parasites and host macrophages. The NOD-like receptor NLRP1a/Caspase-1 pathway is the best candidate to mediate the parasite-induced cell death. These data represent new insights towards the identification of a major pathway of innate resistance to toxoplasmosis and the prediction of individual resistance. | | 24699513
|
Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. Yuan, Y; Zha, H; Rangarajan, P; Ling, EA; Wu, C BMC neuroscience
15
125
2014
概要を表示する
In response to cerebral ischemia, activated microglia release excessive inflammatory mediators which contribute to neuronal damage. Therefore, inhibition of microglial over-activation could be a therapeutic strategy to alleviate various microglia-mediated neuroinflammation. This study was aimed to elucidate the anti-inflammatory effects of Scutellarin and Edaravone given either singly, or in combination in activated microglia in rats subjected to middle cerebral artery occlusion (MCAO), and in lipopolysaccharide (LPS)-induced BV-2 microglia. Expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and inducible nitric oxide synthase (iNOS) was assessed by immunofluorescence staining and Western blot. Reactive oxygen species (ROS) and nitric oxide (NO) levels were determined by flow cytometry and fluorescence microscopy, respectively.In vivo, both Edaravone and Scutellarin markedly reduced the infarct cerebral tissue area with the latter drug being more effective with the dosage used; furthermore, when used in combination the reduction was more substantial. Remarkably, a greater diminution in distribution of activated microglia was observed with the combined drug treatment which also attenuated the immunoexpression of TNF-α, IL-1β and iNOS to a greater extent as compared to the drugs given separately. In vitro, both drugs suppressed upregulated expression of inflammatory cytokines, iNOS, NO and ROS in LPS-induced BV-2 cells. Furthermore, Edaravone and Scutellarin in combination cumulatively diminished the expression levels of the inflammatory mediators being most pronounced for TNF-α as evidenced by Western blot.The results suggest that Edaravone and Scutellarin effectively suppressed the inflammatory responses in activated microglia, with Scutellarin being more efficacious within the dosage range used. Moreover, when both drugs were used in combination, the infarct tissue area was reduced more extensively; also, microglia-mediated inflammatory mediators notably TNF-α expression was decreased cumulatively. | | 25416145
|
Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. Yao, L; Kan, EM; Lu, J; Hao, A; Dheen, ST; Kaur, C; Ling, EA Journal of neuroinflammation
10
23
2013
概要を表示する
Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury.One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining.TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4 downregulation-mediated inhibition of inflammatory cytokines in primary microglia and BV-2 cells was accompanied by the suppression of NF-κB activation. Furthermore, HIF-1α antibody neutralization attenuated the increase of TLR4 expression in hypoxic BV-2 cells. TLR4 inhibition in vivo attenuated the immunoexpression of TNF-α, IL-1β and iNOS on microglia post-hypoxia.Activated microglia TLR4 expression mediated neuroinflammation via a NF-κB signaling pathway in response to hypoxia. Hence, microglia TLR4 presents as a potential therapeutic target for neonatal hypoxia brain injuries. | Immunohistochemistry | 23388509
|
Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. Rathnasamy, G; Ling, EA; Kaur, C The Journal of neuroscience : the official journal of the Society for Neuroscience
31
17982-95
2011
概要を表示する
This study was aimed to examine the role of iron in causing periventricular white matter (PWM) damage following a hypoxic injury in the developing brain. Along with iron, the expression of iron regulatory proteins (IRPs) and transferrin receptor (TfR), which are involved in iron acquisition, was also examined in the PWM by subjecting 1-d-old Wistar rats to hypoxia. Apart from an increase in iron levels in PWM, Perls' iron staining showed an increase of intracellular iron in the preponderant amoeboid microglial cells (AMCs) in the tissue. In response to hypoxia, the protein levels of IRP1, IRP2, and TfR in PWM and AMCs were significantly increased. In primary microglial cultures, administration of iron chelator deferoxamine reduced the generation of iron-induced reactive oxygen and nitrogen species and proinflammatory cytokines such as tumor necrosis factor-α and interleukin-1β. Primary oligodendrocytes treated with conditioned medium from hypoxic microglia exhibited reduced glutathione levels, increased lipid peroxidation, upregulated caspase-3 expression, and reduced proliferation. This was reversed to control levels on treatment with conditioned medium from deferoxamine treated hypoxic microglia; also, there was reduction in apoptosis of oligodendrocytes. The present results suggest that excess iron derived primarily from AMCs might be a mediator of oligodendrocyte cell death in PWM following hypoxia in the neonatal brain. | Western Blotting | 22159112
|
Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. Li, F; Wang, L; Li, JW; Gong, M; He, L; Feng, R; Dai, Z; Li, SQ BMC neuroscience
12
111
2011
概要を表示する
Activation of amoeboid microglial cells (AMC) and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia.We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC) and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7) but the immunofluorescence in AMC was progressively diminished with advancing age (P14). It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-α protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% vs hypoxic group) and TNF-α expression (40% vs hypoxic group). However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid) tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression.It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-α expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate suggesting that P2X4 mediates ATP induced AMC activation and its production of proinflammatory cytokines. 記事全文 | Immunofluorescence | 22053919
|
Expression of sphingosine kinase 1 in amoeboid microglial cells in the corpus callosum of postnatal rats. Lin, H; Baby, N; Lu, J; Kaur, C; Zhang, C; Xu, J; Ling, EA; Dheen, ST Journal of neuroinflammation
8
13
2011
概要を表示する
Sphingosine kinase 1 (SphK1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P) has been shown to be expressed in monocytes and monocyte-derived peripheral macrophages. This study demonstrates SphK1 immunoexpression in amoeboid microglial cells (AMC), a nascent monocyte-derived brain macrophage in the corpus callosum of developing rat brain. SphK1 immunofluorescence expression, which appeared to be weak in AMC in normal brain, was markedly induced by lipopolysaccharide (LPS) or hypoxia treatment. Western blot analysis also showed increased expression level of SphK1 in the corpus callosum rich in AMC after LPS treatment. Detection of SphK1 mRNA and its upregulation after LPS treatment was confirmed in primary culture AMC by RT-PCR. Administration of N, N-dimethylsphingosine (DMS), a specific inhibitor of SphK1, effectively reduced upregulated SphK1 immunoexpression in AMC both in vivo and in vitro. This was corroborated by western blot which showed a decrease in SphK1 protein level of callosal tissue with DMS pretreatment. Remarkably, LPS-induced upregulation of the transcription factor NFκB was suppressed by DMS. We conclude that SphK1 expression in AMC may be linked to regulation of proinflammatory cytokines via an NFκB signaling pathway. 記事全文 | | 21310085
|
Cytokine changes in the horizontal diagonal band of Broca in the septum after running and stroke: a correlation to glial activation. E T Ang, P T H Wong, S Moochhala, Y K Ng Neuroscience
129
337-47
2004
概要を表示する
The relationship between running, glial cell activation and pro-inflammatory cytokines was studied in the context of neuroprotection against ischemic stroke induced by middle cerebral artery occlusion (MCAO). This was investigated in four groups of rats, namely, (1) nonrunner, (2) runner after 12 weeks of treadmill running, (3) nonrunner with MCAO and (4) runner with MCAO. The horizontal diagonal band of Broca (HDB) in the septum was scrutinized for qualitative cum quantitative changes in the microglia and astrocytes. Reverse transcription-polymerase chain reaction and immunoblot work were carried out in the forebrain homogenate to determine, respectively, the gene and protein expression of several pro-inflammatory cytokines. Our results indicated that the runner exhibited less immunoreactivity and reduced numbers of glial cells within the HDB compared with the nonrunner. Interestingly, the mRNA and protein levels of tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and interferon-gamma, were significantly downregulated in the runner. Our data also suggest albeit with some inconsistency that the runner/MCAO rats had benefited from running. These observations suggest that running can result in changes to the microenvironment, in which the microglia and astrocytes exist in a state of quiescence concomitant with a reduced expression of pro-inflammatory cytokines, that may lead to beneficial effects seen in ischemic stroke induced by MCAO. | | 15501591
|