Expression of HES and HEY genes in infantile hemangiomas. Adepoju, O; Wong, A; Kitajewski, A; Tong, K; Boscolo, E; Bischoff, J; Kitajewski, J; Wu, JK Vascular cell
3
19
2011
概要を表示する
Infantile hemangiomas (IHs) are the most common benign tumor of infancy, yet their pathogenesis is poorly understood. IHs are believed to originate from a progenitor cell, the hemangioma stem cell (HemSC). Recent studies by our group showed that NOTCH proteins and NOTCH ligands are expressed in hemangiomas, indicating Notch signaling may be active in IHs. We sought to investigate downstream activation of Notch signaling in hemangioma cells by evaluating the expression of the basic HLH family proteins, HES/HEY, in IHs.HemSCs and hemangioma endothelial cells (HemECs) are isolated from freshly resected hemangioma specimens. Quantitative RT-PCR was performed to probe for relative gene transcript levels (normalized to beta-actin). Immunofluorescence was performed to evaluate protein expression. Co-localization studies were performed with CD31 (endothelial cells) and NOTCH3 (peri-vascular, non-endothelial cells). HemSCs were treated with the gamma secretase inhibitor (GSI) Compound E, and gene transcript levels were quantified with real-time PCR.HEY1, HEYL, and HES1 are highly expressed in HemSCs, while HEY2 is highly expressed in HemECs. Protein expression evaluation by immunofluorescence confirms that HEY2 is expressed by HemECs (CD31+ cells), while HEY1, HEYL, and HES1 are more widely expressed and mostly expressed by perivascular cells of hemangiomas. Inhibition of Notch signaling by addition of GSI resulted in down-regulation of HES/HEY genes.HES/HEY genes are expressed in IHs in cell type specific patterns; HEY2 is expressed in HemECs and HEY1, HEYL, HES1 are expressed in HemSCs. This pattern suggests that HEY/HES genes act downstream of Notch receptors that function in distinct cell types of IHs. HES/HEY gene transcripts are decreased with the addition of a gamma-secretase inhibitor, Compound E, demonstrating that Notch signaling is active in infantile hemangioma cells. 記事全文 | | 21834989
|
Activation of notch signaling in a xenograft model of brain metastasis. Nam, DH; Jeon, HM; Kim, S; Kim, MH; Lee, YJ; Lee, MS; Kim, H; Joo, KM; Lee, DS; Price, JE; Bang, SI; Park, WY Clinical cancer research : an official journal of the American Association for Cancer Research
14
4059-66
2008
概要を表示する
The potential of metastasis can be predicted from clinical features like tumor size, histologic grade, and gene expression patterns. We examined the whole-genome transcriptomic profile of a xenograft model of breast cancer to understand the characteristics of brain metastasis.Variants of the MDA-MB-435 cell were established from experimental brain metastases. The LvBr2 variant was isolated from lesions in a mouse injected in the left ventricle of the heart, and these cells were used for two cycles of injection into the internal carotid artery and selection of brain lesions, resulting in the Br4 variant. To characterize the different metastatic variants, we examined the gene expression profile of MDA-MB-435, LvBr2, and Br4 cells using microarrays.We could identify 2,016 differentially expressed genes in Br4 by using the F test. Various metastasis-related genes and a number of genes related to angiogenesis, migration, tumorigenesis, and cell cycle were differentially expressed by the Br4 cells. Notably, the Notch signaling pathway was activated in Br4, with increased Jag2 mRNA, activated Notch intracellular domain, and Notch intracellular domain/CLS promoter-luciferase activity. Br4 cells were more migratory and invasive than MDA-MB-435 cells in collagen and Matrigel Transwell assays, and the migration and invasion of Br4 cells were significantly inhibited by inactivation of Notch signaling using DAPT, a gamma-secretase inhibitor, and RNA interference-mediated knockdown of Jagged 2 and Notch1.Taken together, these results suggest that we have isolated variants of a human cancer cell line with enhanced brain metastatic properties, and the activation of Notch signaling might play a crucial role in brain metastasis. | | 18593982
|
Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Hoek, K; Rimm, DL; Williams, KR; Zhao, H; Ariyan, S; Lin, A; Kluger, HM; Berger, AJ; Cheng, E; Trombetta, ES; Wu, T; Niinobe, M; Yoshikawa, K; Hannigan, GE; Halaban, R Cancer research
64
5270-82
2004
概要を表示する
Affymetrix and spotted oligonucleotide microarrays were used to assess global differential gene expression comparing normal human melanocytes with six independent melanoma cell strains from advanced lesions. The data, validated at the protein level for selected genes, confirmed the overexpression in melanoma cells relative to normal melanocytes of several genes in the growth factor/receptor family that confer growth advantage and metastasis. In addition, novel pathways and patterns of associated expression in melanoma cells not reported before emerged, including the following: (a) activation of the NOTCH pathway; (b) increased Twist expression and altered expression of additional transcriptional regulators implicated in embryonic development and epidermal/mesenchymal transition; (c) coordinated activation of cancer/testis antigens; (d) coordinated down-regulation of several immune modulation genes, in particular in the IFN pathways; (e) down-regulation of several genes implicated in membrane trafficking events; and (f) down-regulation of growth suppressors, such as the Prader-Willi gene NECDIN, whose function was confirmed by overexpression of ectopic Flag-necdin. Validation of differential expression using melanoma tissue microarrays showed that reduced ubiquitin COOH-terminal esterase L1 in primary melanoma is associated with worse outcome and that increased expression of the basic helix-loop-helix protein Twist is associated with worse outcome. Some differentially expressed genes reside on chromosomal regions displaying common loss or gain in melanomas or are known to be regulated by CpG promoter methylation. These results provide a comprehensive view of changes in advanced melanoma relative to normal melanocytes and reveal new targets that can be used in assessing prognosis, staging, and therapy of melanoma patients. | Western Blotting | 15289333
|