The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia. Alig, SK; Stampnik, Y; Pircher, J; Rotter, R; Gaitzsch, E; Ribeiro, A; Wörnle, M; Krötz, F; Mannell, H PloS one
10
e0121113
2015
概要を表示する
The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases. | | 25799543
|
Hypoxia-inducible factor 1 contributes to N-acetylcysteine's protection in stroke. Zhang, Z; Yan, J; Taheri, S; Liu, KJ; Shi, H Free radical biology & medicine
68
8-21
2014
概要を表示する
Stroke is a leading cause of adult morbidity and mortality with very limited treatment options. Evidence from preclinical models of ischemic stroke has demonstrated that the antioxidant N-acetylcysteine (NAC) effectively protects the brain from ischemic injury. Here, we evaluated a new pathway through which NAC exerted its neuroprotection in a transient cerebral ischemia animal model. Our results demonstrated that pretreatment with NAC increased protein levels of hypoxia-inducible factor-1α (HIF-1α), the regulatable subunit of HIF-1, and its target proteins erythropoietin (EPO) and glucose transporter (GLUT)-3, in the ipsilateral hemispheres of rodents subjected to 90min middle cerebral artery occlusion (MCAO) and 24h reperfusion. Interestingly, after NAC pretreatment and stroke, the contralateral hemisphere also demonstrated increased levels of HIF-1α, EPO, and GLUT-3, but to a lesser extent. Suppressing HIF-1 activity with two widely used pharmacological inhibitors, YC-1 and 2ME2, and specific knockout of neuronal HIF-1α abolished NAC's neuroprotective effects. The results also showed that YC-1 and 2ME2 massively enlarged infarcts, indicating that their toxic effect was larger than just abolishing NAC's neuroprotective effects. Furthermore, we determined the mechanism of NAC-mediated HIF-1α induction. We observed that NAC pretreatment upregulated heat-shock protein 90 (Hsp90) expression and increased the interaction of Hsp90 with HIF-1α in ischemic brains. The enhanced association of Hsp90 with HIF-1α increased HIF-1α stability. Moreover, Hsp90 inhibition attenuated NAC-induced HIF-1α protein accumulation and diminished NAC-induced neuroprotection in the MCAO model. These results strongly indicate that HIF-1 plays an important role in NAC-mediated neuroprotection and provide a new molecular mechanism involved in the antioxidant's neuroprotection in ischemic stroke. | | 24296245
|
The role of hypoxia-inducible factor-1α and vascular endothelial growth factor in late-phase preconditioning with xenon, isoflurane and levosimendan in rat cardiomyocytes. Goetzenich, A; Hatam, N; Preuss, S; Moza, A; Bleilevens, C; Roehl, AB; Autschbach, R; Bernhagen, J; Stoppe, C Interactive cardiovascular and thoracic surgery
18
321-8
2014
概要を表示する
The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning.Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining.Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P less than 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival.We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF. | Western Blotting | 24351506
|
Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons. Ramamoorthy, P; Shi, H Acta neuropathologica communications
2
51
2014
概要を表示する
Pyramidal (glutamatergic) neurons and interneurons are morphologically and functionally well defined in the central nervous system. Although it is known that glutamatergic neurons undergo immediate cell death whereas interneurons are insensitive or survive longer during cerebral ischemia, the protection mechanisms responsible for this interneuronal survival are not well understood. Hypoxia inducible factor-1 (HIF-1) plays an important role in protecting neurons from hypoxic/ischemic insults. Here, we studied the expression of HIF-1α, the regulatable subunit of HIF-1, in the different neuronal phenotypes under in vitro and in vivo ischemia.In a primary cortical culture, HIF-1α expression was observed in neuronal somata after hypoxia (1% oxygen) in the presence of 5 or 25 mM glucose but not under normoxia (21% oxygen). Interestingly, only certain MAP2-positive neurons containing round somata (interneuron-like morphology) co-localized with HIF-1α staining. Other neurons such as pyramidal-like neurons showed no expression of HIF-1α under either normoxia or hypoxia. The HIF-1α positive neurons were GAD65/67 positive, confirming that they were interneuron-type cells. The HIF-1α expressing GAD65/67-positive neurons also possessed high levels of glutathione. We further demonstrated that ischemia induced significant HIF-1α expression in interneurons but not in pyramidal neurons in a rat model of middle cerebral artery occlusion.These results suggest that HIF-1α protein expression induced by ischemia is neuron-type specific and that this specificity may be related to the intracellular level of glutathione (GSH). | Immunofluorescence | 24887017
|
Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. Yan, J; Zhou, B; Taheri, S; Shi, H PloS one
6
e27798
2011
概要を表示する
Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system. | | 22110762
|