MMP Activation Table

EnzymeSynonymsLatent Form MWappr (kDa)Activating AgentConditionsActivation TerminationActive Form MWappr (kDa)Mature Active Form N-terminal sequenceRelative Activation LevelReference
IntermediatesMature FormCalculated
MMP-1 Collagenase-I, Fibroblast Collagenase, Intersitital Collagenase 57Gly & 52
aa=51.8
acGly~1x5
APMA, 1mM 37oC, 2-4h A 44 43 42.5 V82LTEG & L83TEGN 1x 1-4
TrypsinTPCK, 10ug/ml 37oC, 10-20 min B 47
active-MMP-7 (1:1 molar ratio) 37oC, slow C   43 42.6 F81VLTEG low 5-6
APMA 1mM + MMP-7 (1:1) 37oC, 2-6h 6.5x
active-MMP-3 37oC; slow 43 42.6 F81VLTEG low 7-8
APMA 1mM + active-MMP-3 37oC 41C-term 40.8 5-8x
MMP-2 Gelatinase A, 72kDa Gelatinase, Type IV Collagenase 72
aa=71.0
APMA, 1mM 37oC, 1-2h A   62 62.1 Y81NFFPR 1x 7, 9-11
TrypsinTPCK, 10 ug/ml does not activate            
active-MMP-3 does not activate            
active-MMP-7 37oC, 8h C       n.d. 0.6x
MMP-3 Stromelysin-1 (59 & 57)Gly
aa=52.2
acGly~1x5
APMA, 1mM 37oC, 6-12h A 46 47Gly & 45 42.8 F83RTFPG 1x 12-16
TrypsinTPCK, 10ug/ml 37oC, 30min B 53 47Gly & 45 42.8 F83RTFPG 1x
active-MMP-7 does not activate              
MMP-7 Matrilysin, PUMP 28
aa=27.9
APMA, 1mM 37oC, 1h A   19 19.1 Y78SLFPNS 1x 5, 17
TrypsinTPCK, 10ug/ml 37oC, 1-2h B
MMP-3 (5x molar excess) 37oC, 8-16h C  
MMP-8 Collagenase-2,
Neutrophil collagenase
(75 & 58N-trm) Gly
aa=51.1
ppGly~2x5
acGly~3x5
APMA, 1mM 37oC, 1-3h A   58Gly 41.9 M80LTPGNP & L81TPGNP 1x 18-19
TrypsinTPCK, 10ug/ml 37C, slow B         Slow  
MMP-3   C   58Gly 41.9 F79MLTPGNP Superact. 20-22
MMP-9 92kDa Gelatinase, Gelatinase B 92Gly
aa=76.3
ppGly~1x5
acGly~2x5
APMA, 1mM 37oC, 16-24h A 83 67 66.6* M75RTPR 1x 23-26
TrypsinTPCK, 10 ug/ml 37°C, 2h B 74 & 68 64 66.6* A74MRTPR; C-term cleavage 1x 19, 25
activeMMP-7 1:1 37oC, 4h C 83 & 80 78 74.6* L16RTNL; C-term cleavage 0.25x 5
APMA, 1mM + activeMMP-7 (1:1) 37oC, 12h 83 62 66.6* M75RTPR & F88QTFE; C-term cleavage 0.7x 5
Active MMP-3 (1:1) 37oC, 1-2h 82
(70)
67
(64)
66.6* F88QTFE; N-term & C-term cleavage 1x 24, 25
MMP-10 Stromelysin-2   like MMP-3                
MMP-11 Stromelysin-3 62 APMA does not activate             27
Furin intracellularly     47     1x
MMP-12 macrophage metalloelastase 54 Autolytic Refolding in Ca2+/Zn2+ buffer   45 22   N-tem & C- term cleavage 1x 28
MMP-13 Collagenase-III 60 APMA, 1mM 37oC, 30-60 min A   48   Y85NVFPRT 1x 30
MMP-3 (1/10 moles) 37oC; 3-7h C   1x
TrypsinTPCK, 10 ug/ml 37oC: 10-30 min B   1x
MMP-14 MT1-MMP 31rProCatDom. APMA Does not activate     25 &
23C-term trunc
      29
Furin Intracellularly      
TrypsinTPCK, 5 ug/ml 37°C; 10-60 min B YAIGGLKW 1x
MMP-15 MT2-MMP 33rProCatDom. Autolytic for rPro Refolding in Ca2+/Zn2+ buffer   30 24 & 22   L84 & L93 1x 31
MMP-16 MT3-MMP rProCatDom Autolytic for rPro Refolding in Ca2+/Zn2+ buffer     21   L91   32
MMP-17 MT4-MMP rProCatDom TrypsinTPCK, 5 ug/ml 37°C; 30-120 min     24       33
MMP-24 MT5-MMP 63 nd Intracellularly   40-46 29       34


Activation Buffer
50mM Tris; 0.15M NaCl; 10mMCaCl2; 0.05% Brij 35


Activation Termination:
A Spin column
B PMSF 2mM; Aprotinin 10 ug/ml; Soybean Trypsin Inhibitor 2-10x of the Trypsin amount
C EDTA 20mM; o-Phenantroline 1 mM (will inactivate the enzyme MMP and the activator MMP)


References:
  1. J Biol Chem. 1987 Apr 25; 262(12):5886-9.
    The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products.
    Grant GA, Eisen AZ, Marmer BL, Roswit WT, Goldberg GI. PMID: 3032947

  2. Biochemistry. 1990 Jul 17; 29(28):6670-7.
    Proteolytic activities of human fibroblast collagenase: hydrolysis of a broad range of substrates at a single active site.
    Fields GB, Netzel-Arnett SJ, Windsor LJ, Engler JA, Birkedal-Hansen H, Van Wart HE. PMID: 2168739

  3. J Biol Chem. 1994 Oct 21; 269(42):26201-7.
    Mutational analysis of residues in and around the active site of human fibroblast-type collagenase.
    Windsor LJ, Bodden MK, Birkedal-Hansen B, Engler JA, Birkedal-Hansen H. PMID: 7929334

  4. J Biol Chem. 1986 May 15; 261(14):6600-5.
    Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein.
    Goldberg GI, Wilhelm SM, Kronberger A, Bauer EA, Grant GA, Eisen AZ. PMID: 3009463

  5. J Biol Chem. 1995 Mar 24; 270(12):6691-7.
    Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties.
    Imai K, Yokohama Y, Nakanishi I, Ohuchi E, Fujii Y, Nakai N, Okada Y. PMID: 7896811

  6. FEBS Lett. 1994 Jan 31;338(2): 227-33.
    Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study.
    Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W. PMID: 8307185

  7. Matrix Suppl. 1992;1: 237-44.
    Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3.
    Nagase H, Suzuki K, Morodomi T, Enghild JJ, Salvesen G. PMID: 1480033

  8. Biochem J. 1987 Nov 15;248(1): 265-8.
    Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes.
    Murphy G, Cockett MI, Stephens PE, Smith BJ, Docherty AJ. PMID: 2829822

  9. J Biol Chem. 1989 Jan 25; 264(3):1353-6.
    The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation.
    Stetler-Stevenson WG, Krutzsch HC, Wacher MP, Margulies IM, Liotta LA. PMID:2536363

  10. FEBS Lett. 1994 May 23;345(1): 14-6.
    Human progelatinase A can be activated by matrilysin. Crabbe T, Smith B, O'Connell J, Docherty A. PMID: 8194591

  11. Eur J Biochem. 1990 Dec 27;194(3): 721-30.
    Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties.
    Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H. PMID: 2269296

  12. Biochemistry. 1996 Aug 27;35(34):11221-7.
    APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide.
    Galazka G, Windsor LJ, Birkedal-Hansen H, Engler JA. PMID: 8780527

  13. Biochemistry. 1990 Jun 19;29(24):5783-9.
    Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate.
    Nagase H, Enghild JJ, Suzuki K, Salvesen G. PMID: 2383557

  14. Biochemistry. 1993 Oct 5;32(39):10289-95.
    Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3 (stromelysin 1).
    Chen LC, Noelken ME, Nagase H. PMID: 8399171

  15. Ann Rheum Dis. 1990 Jun;49 Suppl 1:469-79.
    The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins.
    Docherty AJ, Murphy G. PMID: 2197998

  16. Biochemistry. 1992 Nov 10;31(44):10757-62.
    Mechanistic studies on the human matrix metalloproteinase stromelysin.
    Harrison RK, Chang B, Niedzwiecki L, Stein RL. PMID: 1420192

  17. Biochemistry. 1992 Sep 15;31(36):8500-7.
    Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases.
    Crabbe T, Willenbrock F, Eaton D, Hynds P, Carne AF, Murphy G, Docherty AJ. PMID: 1390635

  18. Biochemistry. 1990 Nov 27;29(47):10628-34.
    Characterization of 58-kilodalton human neutrophil collagenase: comparison with human fibroblast collagenase.
    Mallya SK, Mookhtiar KA, Gao Y, Brew K, Dioszegi M, Birkedal-Hansen H, Van Wart HE. PMID: 2176876

  19. Matrix Suppl. 1992;1: 245-55.
    Latent collagenase and gelatinase from human neutrophils and their activation.
    Tschesche H, Knäuper V, Krämer S, Michaelis J, Oberhoff R, Reinke H. PMID: 1480034

  20. Biochem J. 1993 Oct 15;295(Pt 2):581-6.
    Direct activation of human neutrophil procollagenase by recombinant stromelysin.
    Knäuper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, Tschesche H. PMID: 8240261

  21. FEBS Lett. 1994 Jan 31;338(2): 227-33.
    Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study.
    Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W. PMID: 8307185

  22. Biochemistry. 1999 Jun 1;38(22):7332-8.
    The N-terminus of collagenase MMP-8 determines superactivity and inhibition: a relation of structure and function analyzed by biomolecular interaction analysis.
    Farr M, Pieper M, Calvete J, Tschesche H. PMID: 10353844

  23. J Biol Chem. 1995 Mar 24;270(12): 6691-7.
    Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties.
    Imai K, Yokohama Y, Nakanishi I, Ohuchi E, Fujii Y, Nakai N, Okada Y. PMID: 7896811

  24. J Biol Chem. 1992 Oct 25; 267(30):21712-9.
    Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties.
    Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, Yamashita K, Hayakawa T. PMID: 1400481

  25. J Biol Chem. 1995 Mar 17; 270(11):6351-6.
    Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP).
    Shapiro SD, Fliszar CJ, Broekelmann TJ, Mecham RP, Senior RM, Welgus HG. PMID: 7890773

  26. J Biol Chem. 1989 Oct 15;264(29):17213-21.
    SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages.
    Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI. PMID: 2551898

  27. Biochem J. 1996 May 1;315(Pt 3):953-8.
    Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases.
    Santavicca M, Noel A, Angliker H, Stoll I, Segain JP, Anglard P, Chretien M, Seidah N, Basset P. PMID: 8645182

  28. J Biol Chem. 1992 Mar 5; 267(7):4664-71.
    Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase.
    Shapiro SD, Griffin GL, Gilbert DJ, Jenkins NA, Copeland NG, Welgus HG, Senior RM, Ley TJ. PMID: 1537850

  29. J Biol Chem. 1996 Jul 19; 271(29):17119-23.
    The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. PMID: 8663332

  30. J Biol Chem. 1996 Jan 19; 271(3):1544-50.
    Biochemical characterization of human collagenase-3.
    Knäuper V, López-Otin C, Smith B, Knight G, Murphy G. PMID: 8576151

  31. Biol Chem. 1997 Feb;378(2): 71-6.
    Activation of progelatinase A and progelatinase A/TIMP-2 complex by membrane type 2-matrix metalloproteinase.
    Kolkenbrock H, Hecker-Kia A, Orgel D, Ulbrich N, Will H. PMID: 9088534

  32. J Biol Chem. 1997 Apr 11; 272(15):9749-54.
    Expression of three membrane-type matrix metalloproteinases (MT-MMPs) in rat vascular smooth muscle cells and characterization of MT3-MMPs with and without transmembrane domain.
    Shofuda K, Yasumitsu H, Nishihashi A, Miki K, Miyazaki K. PMID: 9092507

  33. J Biol Chem. 1995 Sep 29; 270(39):23013-20.
    Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family.
    Takino T, Sato H, Shinagawa A, Seiki M. PMID: 7559440

  34. J Biol Chem. 1999 Mar 26; 274(13):8925-32.
    Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP.
    Pei D. PMID: 10085137