Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. Dong, Z; Han, H; Li, H; Bai, Y; Wang, W; Tu, M; Peng, Y; Zhou, L; He, W; Wu, X; Tan, T; Liu, M; Wu, X; Zhou, W; Jin, W; Zhang, S; Sacktor, TC; Li, T; Song, W; Wang, YT The Journal of clinical investigation
125
234-47
2015
Show Abstract
Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase Mζ (PKMζ) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer's disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions. | | 25437879
|
Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence. Anastasio, NC; Stutz, SJ; Fox, RG; Sears, RM; Emeson, RB; DiLeone, RJ; O'Neil, RT; Fink, LH; Li, D; Green, TA; Moeller, FG; Cunningham, KA Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
39
370-82
2014
Show Abstract
Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues ('cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors. | | 23939424
|
LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Parisiadou, L; Yu, J; Sgobio, C; Xie, C; Liu, G; Sun, L; Gu, XL; Lin, X; Crowley, NA; Lovinger, DM; Cai, H Nature neuroscience
17
367-76
2014
Show Abstract
Leucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). We found that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ). A lack of LRRK2 promoted the synaptic translocation of PKA and increased PKA-mediated phosphorylation of actin-disassembling enzyme cofilin and glutamate receptor GluR1, resulting in abnormal synaptogenesis and transmission in the developing SPNs. Furthermore, PKA-dependent phosphorylation of GluR1 was also aberrantly enhanced in the striatum of young and aged Lrrk2(-/-) mice after treatment with a Drd1 agonist. Notably, a Parkinson's disease-related Lrrk2 R1441C missense mutation that impaired the interaction of LRRK2 with PKARIIβ also induced excessive PKA activity in the SPNs. Our findings reveal a previously unknown regulatory role for LRRK2 in PKA signaling and suggest a pathogenic mechanism of SPN dysfunction in Parkinson's disease. | Immunocytochemistry | 24464040
|
Low density lipoprotein receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptor-dependent intracellular signaling and NMDA-induced regulation of postsynaptic protein complexes. Nakajima, C; Kulik, A; Frotscher, M; Herz, J; Schäfer, M; Bock, HH; May, P J Biol Chem
288
21909-23
2013
Show Abstract
The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. | | 23760271
|
Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. Puglisi, F; Vanni, V; Ponterio, G; Tassone, A; Sciamanna, G; Bonsi, P; Pisani, A; Mandolesi, G PloS one
8
e68063
2013
Show Abstract
Torsin A (TA) is a ubiquitous protein belonging to the superfamily of proteins called "ATPases associated with a variety of cellular activities" (AAA(+) ATPase). To date, a great deal of attention has been focused on neuronal TA since its mutant form causes early-onset (DYT1) torsion dystonia, an inherited movement disorder characterized by sustained muscle contractions and abnormal postures. Interestingly, it has been proposed that TA, by interacting with the cytoskeletal network, may contribute to the control of neurite outgrowth and/or by acting as a chaperone at synapses could affect synaptic vesicle turnover and neurotransmitter release. Accordingly, both its peculiar developmental expression in striatum and cerebellum and evidence from DYT1 knock-in mice suggest that TA may influence dendritic arborization and synaptogenesis in the brain. Therefore, to better understand TA function a detailed description of its localization at synaptic level is required. Here, we characterized by means of rigorous quantitative confocal analysis TA distribution in the mouse cerebellum at postnatal day 14 (P14), when both cerebellar synaptogenesis and TA expression peak. We observed that the protein is broadly distributed both in cerebellar cortex and in the deep cerebellar nuclei (DCN). Of note, Purkinje cells (PC) express high levels of TA also in the spines and axonal terminals. In addition, abundant expression of the protein was found in the main GABA-ergic and glutamatergic inputs of the cerebellar cortex. Finally, TA was observed also in glial cells, a cellular population little explored so far. These results extend our knowledge on TA synaptic localization providing a clue to its potential role in synaptic development. | | 23840813
|
Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1. Lonskaya, I; Partridge, J; Lalchandani, RR; Chung, A; Lee, T; Vicini, S; Hoe, HS; Lim, ST; Conant, K PloS one
8
e69136
2013
Show Abstract
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory. | | 23844251
|
Kv4.2 potassium channels segregate to extrasynaptic domains and influence intrasynaptic NMDA receptor NR2B subunit expression. Kaufmann, WA; Matsui, K; Jeromin, A; Nerbonne, JM; Ferraguti, F Brain structure & function
218
1115-32
2013
Show Abstract
Neurons of the intercalated cell clusters (ITCs) represent an important relay site for information flow within amygdala nuclei. These neurons receive mainly glutamatergic inputs from the basolateral amygdala at their dendritic domains and provide feed-forward inhibition to the central nucleus. Voltage-gated potassium channels type-4.2 (Kv4.2) are main players in dendritic signal processing and integration providing a key component of the A currents. In this study, the subcellular localization and distribution of the Kv4.2 was studied in ITC neurons by means of light- and electron microscopy, and compared to other types of central principal neurons. Several ultrastructural immunolocalization techniques were applied including pre-embedding techniques and, most importantly, SDS-digested freeze-fracture replica labeling. We found Kv4.2 densely expressed in somato-dendritic domains of ITC neurons where they show a differential distribution pattern as revealed by nearest neighbor analysis. Comparing ITC neurons with hippocampal pyramidal and cerebellar granule cells, a cell type- and domain-dependent organization in Kv4.2 distribution was observed. Kv4.2 subunits were localized to extrasynaptic sites where they were found to influence intrasynaptic NMDA receptor subunit expression. In samples of Kv4.2 knockout mice, the frequency of NR1-positive synapses containing the NR2B subunit was significantly increased. This indicates a strong, yet indirect effect of Kv4.2 on the synaptic content of NMDA receptor subtypes, and a likely role in synaptic plasticity at ITC neurons. | | 22932868
|
Activity-dependent local translation of matrix metalloproteinase-9. Dziembowska, M; Milek, J; Janusz, A; Rejmak, E; Romanowska, E; Gorkiewicz, T; Tiron, A; Bramham, CR; Kaczmarek, L The Journal of neuroscience : the official journal of the Society for Neuroscience
32
14538-47
2012
Show Abstract
Local, synaptic synthesis of new proteins in response to neuronal stimulation plays a key role in the regulation of synaptic morphogenesis. Recent studies indicate that matrix metalloproteinase-9 (MMP-9), an endopeptidase that regulates the pericellular environment through cleavage of its protein components, plays a critical role in regulation of spine morphology and synaptic plasticity. Here, we sought to determine whether MMP-9 mRNA is transported to dendrites for local translation and protein release. First, dendritic transport of MMP-9 mRNA was seen in primary hippocampal neuronal cultures treated with glutamate and in dentate gyrus granule cells in adult anesthetized rats after induction of long-term potentiation. Second, rapid, activity-dependent polyadenylation of MMP-9 mRNA; association of the mRNA with actively translating polysomes; and de novo MMP-9 protein synthesis were obtained in synaptoneurosomes isolated from rat hippocampus. Third, glutamate stimulation of cultured hippocampal neurons evoked a rapid (in minutes) increase in MMP-9 activity, as measured by cleavage of its native substrate, β-dystroglycan. This activity was reduced by the polyadenylation inhibitor, thus linking MMP-9 translation with protein function. In aggregate, our findings show that MMP-9 mRNA is transported to dendrites and locally translated and that the protein is released in an activity-dependent manner. Acting in concert with other dendritically synthesized proteins, locally secreted MMP-9 may contribute to the structural and functional plasticity of the activated synapses. | | 23077039
|
PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Zheng, S; Gray, EE; Chawla, G; Porse, BT; O'Dell, TJ; Black, DL Nature neuroscience
15
381-8, S1
2012
Show Abstract
Postsynaptic density protein 95 (PSD-95) is essential for synaptic maturation and plasticity. Although its synaptic regulation has been widely studied, the control of PSD-95 cellular expression is not understood. We found that Psd-95 was controlled post-transcriptionally during neural development. Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay. The loss of first PTBP1 and then of PTBP2 during embryonic development allowed splicing of exon 18 and expression of PSD-95 late in neuronal maturation. Re-expression of PTBP1 or PTBP2 in differentiated neurons inhibited PSD-95 expression and impaired the development of glutamatergic synapses. Thus, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation. | | 22246437
|
Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Lauritzen, F; Perez, EL; Melillo, ER; Roh, JM; Zaveri, HP; Lee, TS; Wang, Y; Bergersen, LH; Eid, T Neurobiology of disease
45
165-76
2012
Show Abstract
Monocarboxylate transporter 1 (MCT1) facilitates the transport of monocarboxylate fuels (lactate, pyruvate and ketone bodies) and acidic drugs, such as valproic acid, across cell membranes. We recently reported that MCT1 is deficient on microvessels in the epileptogenic hippocampal formation in patients with medication-refractory temporal lobe epilepsy (TLE). To further define the role of MCT1 in the pathophysiology of TLE, we used immunohistochemistry and stereological analysis to localize and quantify the transporter in the hippocampal formation in three novel and highly relevant rat models of TLE and in nonepileptic control animals. One model utilizes methionine sulfoximine to induce brain glutamine synthetase deficiency and recurrent limbic seizures, while two models employ an episode of perforant pathway stimulation to cause epilepsy. MCT1 was lost on microvessels and upregulated on astrocytes in the hippocampal formation in all models of TLE. Notably, the loss of MCT1 on microvessels was not due to a reduction in microvessel density. The similarities in MCT1 expression among human subjects with TLE and several animal models of the disease strongly suggest a critical role of this molecule in the pathogenesis of TLE. We hypothesize that the downregulation of MCT1 may promote seizures via impaired uptake of ketone bodies and antiepileptic drugs by the epileptogenic brain. We also propose that the overexpression of MCT1 on astrocytes may lead to increased uptake or release of monocarboxylates by these cells, with important implications for brain metabolism and excitability. These hypotheses can now be rigorously tested in several animal models that replicate key features of human TLE. | Immunohistochemistry | 21856423
|