Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells. Zeng, GF; Cai, SX; Wu, GJ BMC cancer
11
113
2010
Mostra il sommario
Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells.Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein.MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody.In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture.These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis. Testo completo dell'articolo | 21450088
|
Inactivation of the small GTPase Rac1 protects the liver from ischemia/reperfusion injury in the rat. Nobuko Harada, Yuji Iimuro, Takashi Nitta, Masanori Yoshida, Hiroshi Uchinami, Toshihiro Nishio, Etsuro Hatano, Naritaka Yamamoto, Yuzo Yamamoto, Yoshio Yamaoka Surgery
134
480-91
2003
Mostra il sommario
BACKGROUND: In ischemia/reperfusion (I/R) injury, a massive generation of reactive oxygen species (ROS) after reperfusion is a critical factor. Rac, a member of the Rho GTPase superfamily, plays important roles in the production of ROS and activation of nuclear factor-kappaB (NF-kappaB) in vitro. However, the exact role of Rac in the ROS production and NF-kappaB activation in vivo after I/R is still obscure. METHODS: We blocked Rac1 activity in the rat liver using adenovirus encoding a dominant negative rac1 mutant (Ad5N17Rac1) and examined whether inactivation of Rac1 could prevent ROS generation in the hepatic I/R injury. Seventy-two hours after the adenoviral infection, hepatic I/R was induced by Pringle's maneuver for 20 minutes, followed by reperfusion in the rats. RESULTS: Ad5N17Rac1 infection significantly attenuated ROS production after reperfusion and suppressed the hepatic injury. Furthermore, N17Rac1 suppressed NF-kappaB activation and messenger RNA expression of tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthetase (iNOS). Ad5LacZ, a control adenovirus, had no effect on the induced hepatic I/R injury, nor did it affect NF-kappaB activation. Immunohistochemical analysis of NF-kappaB (p65) revealed that translocation of p65 to the nucleus after reperfusion was blocked in many of non-parenchymal cells (NPCs) and in hepatocytes in the Ad5N17Rac1-infected liver. CONCLUSION: We conclude that Rac1 is required in ROS generation and NF-kappaB activation after hepatic I/R in vivo, and that inactivation of NF-kappaB in NPCs and suppression of ROS generation in NPCs and hepatocytes possibly account for the protective effect of N17Rac1 in this study. | 14555937
|