Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Zhi-Jie Cheng, Raman Deep Singh, Deepak K Sharma, Eileen L Holicky, Kentaro Hanada, David L Marks, Richard E Pagano Molecular biology of the cell
17
3197-210
2005
Mostra il sommario
Sphingolipids (SLs) play important roles in membrane structure and cell function. Here, we examine the SL requirements of various endocytic mechanisms using a mutant cell line and pharmacological inhibitors to disrupt SL biosynthesis. First, we demonstrated that in Chinese hamster ovary cells we could distinguish three distinct mechanisms of clathrin-independent endocytosis (caveolar, RhoA, and Cdc42 dependent) which differed in cargo, sensitivity to pharmacological agents, and dominant negative proteins. General depletion of SLs inhibited endocytosis by each clathrin-independent mechanism, whereas clathrin-dependent uptake was unaffected. Depletion of glycosphingolipids (GSLs; a subgroup of SLs) selectively blocked caveolar endocytosis and decreased caveolin-1 and caveolae at the plasma membrane. Caveolar endocytosis and PM caveolae could be restored in GSL-depleted cells by acute addition of exogenous GSLs. Disruption of RhoA- and Cdc42-regulated endocytosis by SL depletion was shown to be related to decreased targeting of these Rho proteins to the plasma membrane and could be partially restored by exogenous sphingomyelin but not GSLs. Both the in vivo membrane targeting and in vitro binding to artificial lipid vesicles of RhoA and Cdc42 were shown to be dependent upon sphingomyelin. These results provide the first evidence that SLs are differentially required for distinct mechanisms of clathrin-independent endocytosis. Testo completo dell'articolo | | 16672382
|
Cell cycle-dependent activation of Ras. Taylor, S J and Shalloway, D Curr. Biol., 6: 1621-7 (1996)
1996
Mostra il sommario
BACKGROUND: Ras proteins play an essential role in the transduction of signals from a wide range of cell-surface receptors to the nucleus. These signals may promote cellular proliferation or differentiation, depending on the cell background. It is well established that Ras plays an important role in the transduction of mitogenic signals from activated growth-factor receptors, leading to cell-cycle entry. However, important questions remain as to whether Ras controls signalling events during cell-cycle progression and, if so, at which point in the cell-cycle it is activated. RESULTS: To address these questions we have developed a novel, functional assay for the detection of cellular activated Ras. Using this assay, we found that Ras was activated in HeLa cells, following release from mitosis, and in NIH 3T3 fibroblasts, following serum-stimulated cell-cycle entry. In each case, peak Ras activation occurred in mid-G1 phase. Ras activation in HeLa cells at mid-G1 phase was dependent on RNA and protein synthesis and was not associated with tyrosine phosphorylation of Shc proteins and their binding to Grb2. Significantly, activation of Ras and the extracellular-signal regulated (ERK) sub-group of mitogen-activated protein kinases were not temporally correlated during G1-phase progression. CONCLUSIONS: Activation of Ras during mid-G1 phase appears to differ in many respects from its rapid activation by growth factors, suggesting a novel mechanism of regulation that may be intrinsic to cell-cycle progression. Furthermore, the temporal dissociation between Ras and ERK activation suggests that Ras targets alternate effector pathways during G1-phase progression. | | 8994826
|