Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Guglielmotto, M; Monteleone, D; Piras, A; Valsecchi, V; Tropiano, M; Ariano, S; Fornaro, M; Vercelli, A; Puyal, J; Arancio, O; Tabaton, M; Tamagno, E Autophagy
10
1827-43
2014
Mostra il sommario
The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies. | 25136804
|
Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance. Dai, Haiming, et al. Cancer Res., 73: 6998-7008 (2013)
2013
Mostra il sommario
Bcl-2 is phosphorylated on Ser(70) after treatment of cells with spindle poisons. On the basis of effects observed in cells overexpressing Bcl-2 S70E or S70A mutants, various studies have concluded that Ser(70) phosphorylation either enhances or diminishes Bcl-2 function. In the present study, the ability of phosphorylated Bcl-2, as well as the S70E and S70A mutants, to bind and neutralize proapoptotic Bcl-2 family members under cell-free conditions and in intact cells was examined in an attempt to resolve this controversy. Surface plasmon resonance indicated that phosphorylated Bcl-2, Bcl-2 S70E, and Bcl-2 S70A exhibit enhanced binding to Bim and Bak compared with unmodified Bcl-2. This enhanced binding reflected a readily detectable conformation change in the loop domain of Bcl-2. Furthermore, Bcl-2 S70E and S70A bound more Bak and Bim than wild-type Bcl-2 in pull-downs and afforded greater protection against several chemotherapeutic agents. Importantly, binding of endogenous Bcl-2 to Bim also increased during mitosis, when Bcl-2 is endogenously phosphorylated, and disruption of this mitotic Bcl-2/Bim binding with navitoclax or ABT-199, like Bcl-2 downregulation, enhanced the cytotoxicity of paclitaxel. Collectively, these results provide not only a mechanistic basis for the enhanced antiapoptotic activity of phosphorylated Bcl-2, but also an explanation for the ability of BH3 mimetics to enhance taxane sensitivity. | 24097825
|