The GluN3A subunit exerts a neuroprotective effect in brain ischemia and the hypoxia process. Wang, H; Yan, H; Zhang, S; Wei, X; Zheng, J; Li, J ASN neuro
5
231-42
2013
Mostra il sommario
NMDARs (N-methyl-D-aspartate receptors) mediate the predominantly excitatory neurotransmission in the CNS (central nervous system). Excessive release of glutamate and overactivation of NMDARs during brain ischemia and the hypoxia process are causally linked to excitotoxicity and neuronal damage. GluN3 subunits, the third member of the NMDAR family with two isoforms, GluN3A and GluN3B, have been confirmed to display an inhibitory effect on NMDAR activity. However, the effect of GluN3 subunits in brain ischemia and hypoxia is not clearly understood. In the present study, the influence of ischemia and hypoxia on GluN3 subunit expression was observed by using the 2VO (two-vessel occlusion) rat brain ischemia model and cell OGD (oxygen and glucose deprivation) hypoxia model. It was found that GluN3A protein expression in rat hippocampus and the prefrontal cortex was increased quickly after brain ischemia and remained at a high level for at least 24 h. However, the expression of the GluN3B subunit was not remarkably changed in both the animal and cell models. After OGD exposure, rat hippocampal neurons with GluN3A subunit overexpression displayed more viability than the wild-type neurons. NG108-15 cells overexpressing GluN3A presented pronounced resistance to glutamate insult. Blocking the increase of intracellular Ca2+ concentration may underlie the neuroprotective mechanism of up-regulated GluN3A subunit. Suppressing the generation of hydroxyl radicals and NO (nitric oxide) is probably also involved in the neuroprotection. | 23883441
|
Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress. Porter, NM; Bohannon, JH; Curran-Rauhut, M; Buechel, HM; Dowling, AL; Brewer, LD; Popovic, J; Thibault, V; Kraner, SD; Chen, KC; Blalock, EM PloS one
7
e40128
2011
Mostra il sommario
Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES), and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter effects of SD in young subjects. | 22792227
|
N-methyl-D-aspartate receptor subunit NR3a expression and function in principal cells of the collecting duct. Sproul, A; Steele, SL; Thai, TL; Yu, S; Klein, JD; Sands, JM; Bell, PD American journal of physiology. Renal physiology
301
F44-54
2010
Mostra il sommario
N-methyl-D-aspartate receptors (NMDARs) are Ca(2+)-permeable, ligand-gated, nonselective cation channels that function as neuronal synaptic receptors but which are also expressed in multiple peripheral tissues. Here, we show for the first time that NMDAR subunits NR3a and NR3b are highly expressed in the neonatal kidney and that there is continued expression of NR3a in the renal medulla and papilla of the adult mouse. NR3a was also expressed in mIMCD-3 cells, where it was found that hypoxia and hypertonicity upregulated NR3a expression. Using short-hairpin (sh) RNA-based knockdown, a stable inner medullary collecting duct (IMCD) cell line was established that had ∼80% decrease in NR3a. Knockdown cells exhibited an increased basal intracellular calcium concentration, reduced cell proliferation, and increased cell death. In addition, NR3a knockdown cells exhibited reduced water transport in response to the addition of vasopressin, suggesting an alteration in aquaporin-2 (AQP2) expression/function. Consistent with this notion, we demonstrate decreased surface expression of glycosylated AQP2 in IMCD cells transfected with NR3a shRNA. To determine whether this also occurred in vivo, we compared AQP2 levels in wild-type vs. in NR3a(-/-) mice. Total AQP2 protein levels in the outer and inner medulla were significantly reduced in knockout mice compared with control mice. Finally, NR3a(-/-) mice showed a significant delay in their ability to increase urine osmolality during water restriction. Thus NR3a may play a renoprotective role in collecting duct cells. Therefore, under conditions that are associated with high vasopressin levels, NR3a, by maintaining low intracellular calcium levels, protects the function of the principal cells to reabsorb water and thereby increase medullary osmolality. | 21429969
|
Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. Karen S-L Wee,Yibin Zhang,Sanjay Khanna,Chian-Ming Low The Journal of comparative neurology
509
2008
Mostra il sommario
N-methyl-D-aspartate (NMDA) receptors have been implicated in many neurological disorders. Although NMDA receptors are best known for their high calcium permeability, the recently discovered NR3 subunits, NR3A and NR3B, have been shown to reduce the calcium permeability of the NMDA receptor. Thus, NR3 subunits may be important players in modulating synaptic plasticity in neurons. Although NR3B expression in the rodent and human brain has been studied, little is known about its distribution in different cell types. Here we used immunolabeling with a specific NR3B antibody together with antibodies against established neurochemical markers to determine the cellular and subcellular localization of NR3B. The nucleus was concurrently stained with NR3B immunolabeling to show that NR3B is widely expressed by many cells in each brain region. Our findings indicate that NR3B is widely expressed in the structures examined in the rat forebrain (hippocampus, cerebral cortex, caudoputamen, and nucleus accumbens), cerebellum, and lumbar sections of the spinal cord. Within these regions NR3B was found to be expressed in all the substructures of the hippocampus (CA1, CA3, dentate gyrus), the various layers of the cerebral cortex, projection neurons and interneurons of the striatum, different cell types of the cerebellum, and motor neurons of the spinal cord. Furthermore, when stained with NR1-the obligatory subunit responsible for forming functional NMDA receptors-the distribution of NR3B appears to be as ubiquitous as NR1. Taken together, our data suggest that there may be a population of NR3B-containing NMDA receptors conferring new functional roles in the mammalian central nervous system. | 18425811
|
Region specific regulation of NR1 in rhesus monkeys following chronic antipsychotic drug administration. O'Connor JA, Hasenkamp W, Horman BM, Muly EC, Hemby SE. Biological psychiatry
60
659-62
2005
Mostra il sommario
BACKGROUND: Altered NMDA receptor subunit protein levels have been reported in various regions of the schizophrenic brain; however, chronic antipsychotic administration in schizophrenic subjects may confound interpretation. METHODS: The effects of chronic antipsychotic drug administration (haloperidol and clozapine) on protein levels of NR1, NR2A and NR2B proteins were evaluated in the nucleus accumbens (NAc), putamen (PUT), dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), and entorhinal cortex (EC) of rhesus monkeys using Western blot analysis. RESULTS: Haloperidol administration significantly decreased NR1 expression in the DLPFC. In contrast, NR2B expression was not affected by antipsychotic administration in any brain region examined. NR2A was not reliably detected in any of the brain regions. CONCLUSIONS: Results indicate that the NR1 subunit in the DLPFC may be a substrate for antipsychotic action and that glutamatergic hypofunction in the DLPFC commonly associated with cognitive dysfunction in schizophrenia may be associated with haloperidol administration. | 16806093
|
Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Hemby, SE; Horman, B; Tang, W Brain research
1064
75-82
2004
Mostra il sommario
Previous examination of binge cocaine self-administration and 2 week withdrawal from cocaine self-administration on ionotropic glutamate receptor subunit (iGluRs) protein levels revealed significant alterations in iGluR protein levels that differed between the mesocorticolimbic and nigrostriatal pathways. The present study was undertaken to extend the examination of cocaine-induced alterations in iGluR protein expression by assessing the effects of acute withdrawal (15-16 h) from limited access cocaine self-administration (8 h/day, 15 days). Western blotting was used to compare levels of iGluR protein expression (NR1-3B, GluR1-7, KA2) in the mesolimbic (ventral tegmental area, VTA; nucleus accumbens, NAc; and prefrontal cortex, PFC) and nigrostriatal pathways (substantia nigra, SN and dorsal caudate-putamen, CPu). Within the mesolimbic pathway, reductions were observed in NR1 and GluR5 immunoreactivity in the VTA although no significant alterations were observed in any iGluR subunits in the NAc. In the PFC, NR1 was significantly upregulated while GluR2/3, GluR4, GluR5, GluR6/7, and KA2 were decreased. Within the nigrostriatal pathway, NR1, NR2A, NR2B, GluR1, GluR6/7 and KA2 were increased in the dorsal CPu, whereas no significant changes were observed in the SN. The results demonstrate region- and pathway-specific alterations in iGluR subunit expression following limited cocaine self-administration and suggest the importance for the activation of pathways that are substrates of the reinforcing and motoric effects of cocaine. | 16277980
|
Assembly of N-methyl-D-aspartate (NMDA) receptors. McIlhinney, R A J, et al. Biochem. Soc. Trans., 31: 865-8 (2003)
2003
Mostra il sommario
The N-methyl-D-aspartate receptor (NMDAR) requires both NR1 and NR2 subunits to form a functional ion channel. Despite the recent advances in our understanding of the contributions of these different subunits to both the function and pharmacology of the NMDAR, the precise subunit stoichiometry of the receptor and the regions of the subunits governing subunit interactions remain unclear. Since NR2 subunits are not transported to the cell surface unless they associate with NR1 subunits, cell-surface expression of NR2A can be used to monitor the association of the different subunits in cells transfected with N- and C-terminally truncated NR1 subunits. By combining measurements of cell-surface expression of NR2A with co-immunoprecipitation experiments, and by using Blue Native gel electrophoresis to determine the oligomerization status of the subunits, we have shown that regions of the N-terminus of NR1 are critical for subunit association, whereas the truncation of the C-terminus of NR1 before the last transmembrane region has no effect on the association of the subunits. Evidence from the Blue Native gels, sucrose-gradient centrifugation and size exclusion of soluble NR1 domains suggests that NR1 subunits alone can form stable dimers. Using a cell line, which can be induced to express the NMDAR following exposure to dexamethasone, we have shown that NMDARs can be expressed at the cell surface within 5 h of the recombinant gene induction, and that there appears to be a delay between the first appearance of the subunits and their stable association. | 12887323
|
Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Matsuda, Keiko, et al. Brain Res. Mol. Brain Res., 100: 43-52 (2002)
2002
Mostra il sommario
We report the cloning and characterization of a novel NMDA receptor subunit cDNA, which encodes a predicted polypeptide of 1003 amino acids. Phylogenic analysis indicates that this new subunit is most closely related to NR3A. Therefore, we term it NR3B. Important functional domains of glutamate receptors, such as the ligand-binding domain, the channel pore, and the channel gate, are conserved in NR3B. NR3B mRNA was expressed highly in pons, midbrain, medulla, and the spinal cord, but at low levels in the forebrain and the cerebellum. Although NR3A mRNA expression decreases sharply after the second postnatal weeks, NR3B mRNA expression levels in whole brain were constant during postnatal development and into adult. Coimmunoprecipitation analysis showed that NR3B could form NMDA receptor complex with NR1a and NR2A subunits in heterologous cells. Although expression of NR3B alone did not reconstitute functional NMDA receptors, coexpression of NR3B reduced the Ca(2+) permeability of glutamate-induced currents in cells expressing NR1a and NR2A. These results indicate that NR3B is a dominant modulatory subunit that can modify the function of NMDA receptors. Since high Ca(2+) permeability of NMDA receptors is thought to be a key feature for NMDA receptors to play critical roles in neurodevelopment, synaptic plasticity, and neuronal death, NR3B may contribute to the regulation of these physiological and pathological processes. | 12008020
|
Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Chatterton, Jon E, et al. Nature, 415: 793-8 (2002)
2002
Mostra il sommario
The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor. | 11823786
|
Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. Nishi, M, et al. J. Neurosci., 21: RC185 (2001)
2001
Mostra il sommario
We have identified a novel glutamate receptor subunit on the human and mouse genome. Cloning of the mouse cDNA revealed a protein consisting of 1003 amino acids encoded by at least nine exons. This protein showed the highest similarity (51%) to the NR3A subunit of the NMDA receptor and therefore was termed NR3B. NR3B has a structure typical of glutamate receptor family members with a signal peptide and four membrane-associated regions. Amino acids forming a ligand-binding pocket are conserved. When coexpressed with NR1 and NR2A in heterologous cells, NR3B suppressed glutamate-induced current similarly to NR3A. Thus members of the NR3 class of NMDA receptors act as dominant-negative subunits in the NMDA receptor complex. NR3B shows very restricted expression in somatic motoneurons of the brainstem and spinal cord. Its expression in other types of motoneurons, including autonomic motoneurons in Onuf's nucleus and oculomotor neurons, is significantly weaker. Our results indicate that NR3B is important as a regulatory subunit that controls NMDA receptor transmission in motoneurons. It may be involved in the pathogenesis of neurodegenerative diseases involving motoneurons as well. | 11717388
|