The zinc- and calcium-binding S100B interacts and co-localizes with IQGAP1 during dynamic rearrangement of cell membranes. Mbele, GO; Deloulme, JC; Gentil, BJ; Delphin, C; Ferro, M; Garin, J; Takahashi, M; Baudier, J The Journal of biological chemistry
277
49998-50007
2002
Mostra il sommario
The Zn(2+)- and Ca(2+)-binding S100B protein is implicated in multiple intracellular and extracellular regulatory events. In glial cells, a relationship exists between cytoplasmic S100B accumulation and cell morphological changes. We have identified the IQGAP1 protein as the major cytoplasmic S100B target protein in different rat and human glial cell lines in the presence of Zn(2+) and Ca(2+). Zn(2+) binding to S100B is sufficient to promote interaction with IQGAP1. IQ motifs on IQGAP1 represent the minimal interaction sites for S100B. We also provide evidence that, in human astrocytoma cell lines, S100B co-localizes with IQGAP1 at the polarized leading edge and areas of membrane ruffling and that both proteins relocate in a Ca(2+)-dependent manner within newly formed vesicle-like structures. Our data identify IQGAP1 as a potential target protein of S100B during processes of dynamic rearrangement of cell membrane morphology. They also reveal an additional cellular function for IQGAP1 associated with Zn(2+)/Ca(2+)-dependent relocation of S100B. | 12377780
|
Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Kuroda, S, et al. Biochem. Biophys. Res. Commun., 262: 1-6 (1999)
1998
Mostra il sommario
Cell-cell adhesion is a dynamic process in various cellular and developmental situations. Cadherins, well-known Ca(2+)-dependent adhesion molecules, are thought to play a major role in the regulation of cell-cell adhesion. However, the molecular mechanism underlying the rearrangement of cadherin-mediated cell-cell adhesion is largely unknown. Cdc42 and Rac1, belonging to the Rho small GTPase family, have recently been shown to be involved in the regulation of cell-cell adhesion. In addition, IQGAP1, an effector for Cdc42 and Rac1, has been shown to regulate the cadherin function through interaction with beta-catenin, a molecule associated with cadherin. In this review, we will summarize the mode of action of Cdc42 and Rac1 as well as IQGAP1 as molecular switches for the cadherin function, and then discuss physiological processes in which the Cdc42/Rac1/IQGAP1 system may be involved. | 10448058
|
Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Weissbach, L, et al. Biochem. Biophys. Res. Commun., 251: 269-76 (1998)
1998
Mostra il sommario
The 190 kD human IQGAP1 protein, by virtue of its N-terminal calponin-homology domain, is found associated with the actin cytoskeleton, and is capable of cross-linking actin filaments. IQGAP1 complexes with several proteins, including the Rho family GTPases Cdc42 and Rac, as well as calmodulin. It was previously noted that one of the IQ motifs of IQGAP1 displays significant similarity to a myosin heavy chain IQ motif responsible for binding the calmodulin-related myosin essential light chain (ELC). Employing the yeast two-hybrid methodology as well as in vitro binding experiments, we present evidence that a truncated version of IQGAP1 can interact with the myosin ELC. This interaction may have significant consequences for various cellular processes that involve actomyosin contractility, and suggests that the biological targets of the ELC may not be restricted to the myosin heavy chain. | 9790945
|
IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. Hart, M J, et al. EMBO J., 15: 2997-3005 (1996)
1996
Mostra il sommario
Proteins that associate with the GTP-bound forms of the Ras superfamily of proteins are potential effector targets for these molecular switches. A 195 kDa protein was purified from cell lysates by affinity chromatography on immobilized cdc42Hs-GTP and a corresponding cDNA was isolated. Sequence analysis revealed localized identities to calponin, the WW domain, unconventional myosins and to the rasGAP-related domain (GRD) contained in IRA, NF-1, SAR1 and rasGAP. p195 was found to be identical to IQGAP1, a protein previously reported to bind ras. Purified recombinant p195/IQGAP1 bound to and inhibited the GTPase activity of cdc42Hs and rac whereas no interaction with ras was detected. The C-terminal half of IQGAP1 containing the GRD bound to cdc42 and rac in a GRD-dependent fashion, but a smaller fragment containing only the GRD did not. Cdc42 was also co-immunoprecipitated from cell lysates with antibody specific to p195/IQGAP1. Calmodulin also co-immunoprecipitated with p195/IQGAP1 and was found to associate with fragments containing the IQ domain. Expression of a cDNA fragment encoding the GRD inhibited the CDC24/CDC42 pathway in yeast, but no effect on ras was observed. In mammalian cells, both endogenous and ectopically expressed p195/IQGAP1 were localized to lamellipodia and ruffling cell membranes, where co-localization with actin was apparent. These results suggest that IQGAP1 is an effector target for cdc42Hs and may mediate the effects of this GTPase on cell morphology. | 8670801
|