Human cytomegalovirus major immediate early 1 protein targets host chromosomes by docking to the acidic pocket on the nucleosome surface. Mücke, K; Paulus, C; Bernhardt, K; Gerrer, K; Schön, K; Fink, A; Sauer, EM; Asbach-Nitzsche, A; Harwardt, T; Kieninger, B; Kremer, W; Kalbitzer, HR; Nevels, M Journal of virology
88
1228-48
2014
Mostra il sommario
The 72-kDa immediate early 1 (IE1) protein encoded by human cytomegalovirus (hCMV) is a nuclearly localized promiscuous regulator of viral and cellular transcription. IE1 has long been known to associate with host mitotic chromatin, yet the mechanisms underlying this interaction have not been specified. In this study, we identify the cellular chromosome receptor for IE1. We demonstrate that the viral protein targets human nucleosomes by directly binding to core histones in a nucleic acid-independent manner. IE1 exhibits two separable histone-interacting regions with differential binding specificities for H2A-H2B and H3-H4. The H2A-H2B binding region was mapped to an evolutionarily conserved 10-amino-acid motif within the chromatin-tethering domain (CTD) of IE1. Results from experimental approaches combined with molecular modeling indicate that the IE1 CTD adopts a β-hairpin structure, docking with the acidic pocket formed by H2A-H2B on the nucleosome surface. IE1 binds to the acidic pocket in a way similar to that of the latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus. Consequently, the IE1 and LANA CTDs compete for binding to nucleosome cores and chromatin. Our work elucidates in detail how a key viral regulator is anchored to human chromosomes and identifies the nucleosomal acidic pocket as a joint target of proteins from distantly related viruses. Based on the striking similarities between the IE1 and LANA CTDs and the fact that nucleosome targeting by IE1 is dispensable for productive replication even in "clinical" strains of hCMV, we speculate that the two viral proteins may serve analogous functions during latency of their respective viruses. | 24227840
|
No evidence of association between human cytomegalovirus infection and papillary thyroid cancer. Huang, TS; Lee, JJ; Cheng, SP World journal of surgical oncology
12
41
2014
Mostra il sommario
Human cytomegalovirus (CMV) has been detected in the thyroid gland and thyroid tumors. CMV infection may activate the mitogen-activated protein kinase pathway, of which aberrant activation is frequently associated with BRAF mutation in papillary thyroid cancer.A total of 45 paired tumorous and adjacent non-neoplastic tissue samples, including 5 follicular adenoma and 40 papillary thyroid cancer, were obtained during thyroidectomy. BRAF mutational status was determined using direct sequencing. The presence of CMV DNA was determined using conventional PCR and quantitative real-time PCR. CMV protein in the tissue samples were evaluated with Western blot analysis.BRAF mutation was identified in the cancerous part of 31 (78%) papillary thyroid cancers. Papillary cancer with BRAF mutation was significantly associated with a larger tumor size (P = 0.045), extrathyroidal invasion (P = 0.012), lymph node metastasis (P = 0.008), and a higher TNM stage (P = 0.044). CMV DNA and protein were not detected in any studied samples.Our results suggest no association between CMV infection and papillary thyroid cancer. | 24559116
|
Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade. Libard, S; Popova, SN; Amini, RM; Kärjä, V; Pietiläinen, T; Hämäläinen, KM; Sundström, C; Hesselager, G; Bergqvist, M; Ekman, S; Zetterling, M; Smits, A; Nilsson, P; Pfeifer, S; de Ståhl, TD; Enblad, G; Ponten, F; Alafuzoff, I PloS one
9
e108861
2014
Mostra il sommario
Human cytomegalovirus (HCMV) has been indicated being a significant oncomodulator. Recent reports have suggested that an antiviral treatment alters the outcome of a glioblastoma. We analysed the performance of commercial HCMV-antibodies applying the immunohistochemical (IHC) methods on brain sample obtained from a subject with a verified HCMV infection, on samples obtained from 14 control subjects, and on a tissue microarray block containing cores of various brain tumours. Based on these trials, we selected the best performing antibody and analysed a cohort of 417 extra- and intra-axial brain tumours such as gliomas, medulloblastomas, primary diffuse large B-cell lymphomas, and meningiomas. HCMV protein pp65 immunoreactivity was observed in all types of tumours analysed, and the IHC expression did not depend on the patient's age, gender, tumour type, or grade. The labelling pattern observed in the tumours differed from the labelling pattern observed in the tissue with an active HCMV infection. The HCMV protein was expressed in up to 90% of all the tumours investigated. Our results are in accordance with previous reports regarding the HCMV protein expression in glioblastomas and medulloblastomas. In addition, the HCMV protein expression was seen in primary brain lymphomas, low-grade gliomas, and in meningiomas. Our results indicate that the HCMV protein pp65 expression is common in intra- and extra-axial brain tumours. Thus, the assessment of the HCMV expression in tumours of various origins and pathologically altered tissue in conditions such as inflammation, infection, and even degeneration should certainly be facilitated. | 25268364
|
High prevalence of human cytomegalovirus in brain metastases of patients with primary breast and colorectal cancers. Taher, C; Frisk, G; Fuentes, S; Religa, P; Costa, H; Assinger, A; Vetvik, KK; Bukholm, IR; Yaiw, KC; Smedby, KE; Bäcklund, M; Söderberg-Naucler, C; Rahbar, A Translational oncology
7
732-40
2014
Mostra il sommario
Brain metastases (BMs) develop by largely unknown mechanisms and cause major morbidity and mortality in patients with solid tumors. Human cytomegalovirus (HCMV) is frequently detected in tumor tissue from patients with different cancers. Here, we aimed to determine the prevalence and potential prognostic role of HCMV in BMs.We obtained archived samples of BMs from 41 patients with breast cancer and 37 with colorectal cancer and paired primary tumor tissues from 13 and 12 patients in each respective group. In addition, primary breast cancer tissues from 15 patients were included. HCMV proteins were detected with an immunohistochemical technique and Western blot. HCMV nucleic acids were detected with TaqMan polymerase chain reaction (PCR) assay.HCMV proteins were abundantly expressed in 99% of BM specimens, and in 12 of 13 (92%) paired primary breast cancer specimens. All 12 paired colon cancer samples were positive for HCMV proteins. Protein staining was mainly confined to neoplastic cells. Western blot analysis detected an HCMV-IE reactive protein in 53% of breast cancer specimens, and PCR detected the presence of HCMV DNA and transcripts in 92% and 80% of samples, respectively. Patients with high-level expression of HCMV-IE proteins in their tumors had a shorter time to tumor progression and shorter overall survival.The prevalence of HCMV proteins and nucleic acids is very high in primary and metastatic tumors and may drive the development of metastatic brain tumors; therefore, this virus may represent a potential therapeutic target in metastatic cancer. | 25500083
|
Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis. Khan, Z; Yaiw, KC; Wilhelmi, V; Lam, H; Rahbar, A; Stragliotto, G; Söderberg-Nauclér, C Carcinogenesis
35
145-54
2014
Mostra il sommario
A lack of gap junctional intercellular communication (GJIC) is common in cancer. Many oncogenic viruses have been shown to downregulate the junctional protein connexin 43 (Cx43) and reduce GJIC. Human cytomegalovirus (HCMV) is a ubiquitous, species-specific betaherpesvirus that establishes life-long latency after primary infection. It encodes two viral gene products, immediate early (IE) proteins IE1 and IE2, which are crucial in viral replication and pathogenesis of many diseases. Emerging evidence demonstrates that HCMV DNA and proteins are highly prevalent in glioblastoma multiforme (GBM) and in other tumors, but HCMV's role in tumorigenesis remains obscure. In the present study, we examined the effects of HCMV infection on Cx43 expression and GJIC as well as the viral mechanism mediating the effects in human GBM cells and tissue samples. We found that HCMV downregulated Cx43 protein, resulting in disruption of functional GJIC as assayed by fluorescent dye transfer assay. We show that both HCMV-IE72 and IE86 mediate downregulation of Cx43 by silencing RNA targeting either IE72 or IE86 coupled with ganciclovir. This finding was further validated by transfection with expression vectors encoding IE72 or IE86, and we show that viral-mediated Cx43 depletion involved proteasomal degradation. Importantly, we also observed that the Cx43 protein levels and IE staining correlated inversely in 10 human GBM tissue specimens. Thus, HCMV regulates Cx43 expression and GJIC, which may contribute to gliomagenesis. | 23978378
|
Glycoprotein B (gB) vaccines adjuvanted with AS01 or AS02 protect female guinea pigs against cytomegalovirus (CMV) viremia and offspring mortality in a CMV-challenge model. Schleiss, MR; Choi, KY; Anderson, J; Mash, JG; Wettendorff, M; Mossman, S; Van Damme, M Vaccine
32
2756-62
2014
Mostra il sommario
The transmission of cytomegalovirus (CMV) from mother to fetus can give rise to severe neurodevelopment defects in newborns. One strategy to prevent these congenital defects is prophylactic vaccination in young women. A candidate vaccine antigen is glycoprotein B (gB). This antigen is abundant on the virion surface and is a major target of neutralization responses in human infections. Here, we have evaluated in a challenge model of congenital guinea pig CMV (GPCMV) infection, GPCMV-gB vaccines formulated with the clinically relevant Adjuvant Systems AS01B and AS02V, or with Freund's adjuvant (FA). Fifty-two GPCMV-seronegative female guinea pigs were administered three vaccine doses before being mated. GPCMV-challenge was performed at Day 45 of pregnancy (of an estimated 65 day gestation). Pup mortality rates in the gB/AS01B, gB/AS02V, and gB/FA groups were 24% (8/34), 10% (4/39) and 36% (12/33), respectively, and in the unvaccinated control group was 65% (37/57). Hence, efficacies against pup mortality were estimated at 64%, 84% and 44% for gB/AS01B (pless than 0.001), gB/AS02V (pless than 0.001) and gB/FA (p=0.014), respectively. Efficacies against GPCMV viremia (i.e. DNAemia, detected by PCR) were estimated at 88%, 68% and 25% for the same vaccines, respectively, but were only significant for gB/AS01B (pless than 0.001), and gB/AS02V (p=0.002). In dams with viremia, viral load was approximately 6-fold lower with vaccination than without. All vaccines were highly immunogenic after two and three doses. In light of these results and of other results of AS01-adjuvanted vaccines in clinical development, vaccine immunogenicity was further explored using human CMV-derived gB antigen adjuvanted with either AS01B or the related formulation AS01E. Both adjuvanted vaccines were highly immunogenic after two doses, in contrast to the lower immunogenicity of the unadjuvanted vaccine. In conclusion, the protective efficacy and immunogenicity of adjuvanted vaccines in this guinea pig model are supportive of investigating gB/AS01 and gB/AS02 in the clinic. | 23867012
|
High prevalence of human cytomegalovirus in carotid atherosclerotic plaques obtained from Russian patients undergoing carotid endarterectomy. Yaiw, KC; Ovchinnikova, O; Taher, C; Mohammad, AA; Davoudi, B; Shlyakhto, E; Rotar, O; Konradi, A; Wilhelmi, V; Rahbar, A; Butler, L; Assinger, A; Söderberg-Nauclér, C Herpesviridae
4
3
2013
Mostra il sommario
Human cytomegalovirus (HCMV) infection is associated with cardiovascular disease (CVD) but the role of this virus in CVD progression remains unclear. We aimed to examine the HCMV serostatus in Russian patients (n = 90) who had undergone carotid endarterectomy (CEA) and controls (n = 82) as well as to determine the prevalence of HCMV immediate early (IE) and late (LA) antigens in carotid atherosclerotic plaques obtained from 89 patients. In addition, we sought to determine whether HCMV infection was associated with inflammatory activity in the plaque by quantifying infiltrating CD3 and CD68 positive cells and 5-LO immunoreactivity.HCMV serology was assessed with ELISA and immunohistochemistry staining was performed to detect HCMV antigens, CD3, CD68 and 5-LO reactivity. The Fisher's exact test was used to compare i) seroprevalence of HCMV IgG between patients and controls and ii) HCMV-positive or -negative to that of CD3, CD68 and 5-LO immunoreactive cells in plaque samples. The student-t test was performed to connote the significance level of mean optical density between patients and controls.The seroprevalence for HCMV IgG was high in both patients and controls (99% and 98%, respectively). Controls had significantly higher IgG titers for HCMV compared with patients (p = 0.0148). Strikingly, we found a high prevalence of HCMV antigens in atherosclerotic plaques; 57/89 (64%) and 47/87 (54%) were HCMV IE and LA positive, respectively. Most plaques had rather low HCMV reactivity with distinct areas of HCMV-positive cells mainly detected in shoulder regions of the plaques, but also in the area adjacent to the necrotic core and fibrous cap. In plaques, the cellular targets for HCMV infection appeared to be mainly macrophages/foam cells and smooth muscle cells. HCMV-positive plaques trended to be associated with increased numbers of CD68 positive macrophages and CD3 positive T cells, while 5-LO reactivity was high in both HCMV-positive and HCMV-negative plaques.In Russian patients undergoing CEA, HCMV proteins are abundantly expressed in carotid plaques and may contribute to the inflammatory response in plaques via enhanced infiltration of CD68 and CD3 cells. | 24229441
|
Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. Kim, Y; Lee, S; Kim, S; Kim, D; Ahn, JH; Ahn, K PLoS pathogens
8
e1002577
2011
Mostra il sommario
The human cytomegalovirus (HCMV) clinical strain Toledo and the attenuated strain AD169 exhibit a striking difference in pathogenic potential and cell tropism. The virulent Toledo genome contains a 15-kb segment, which is present in all virulent strains but is absent from the AD169 genome. The pathogenic differences between the 2 strains are thought to be associated with this additional genome segment. Cytokines induced during viral infection play major roles in the regulation of the cellular interactions involving cells of the immune and inflammatory systems and consequently determine the pathogenic outcome of infection. The chemokine RANTES (Regulated on activation, normal T-cell expressed and secreted) attracts immune cells during inflammation and the immune response, indicating a role for RANTES in viral pathogenesis. Here, we show that RANTES was downregulated in human foreskin fibroblast (HFF) cells at a later stage after infection with the Toledo strain but not after infection with the AD169 strain. miR-UL148D, the only miRNA predicted from the UL/b' sequences of the Toledo genome, targeted the 3'-untranslated region of RANTES and induced degradation of RANTES mRNA during infection. While wild-type Toledo inhibited expression of RANTES in HFF cells, Toledo mutant virus in which miR-UL148D is specifically abrogated did not repress RANTES expression. Furthermore, miR-UL148D-mediated downregulation of RANTES was inhibited by treatment with a miR-UL148D-specific inhibitor designed to bind to the miR-UL148D sequence via an antisense mechanism, supporting the potential value of antisense agents as therapeutic tools directed against HCMV. Our findings identify a viral microRNA as a novel negative regulator of the chemokine RANTES and provide clues for understanding the pathogenesis of the clinical strains of HCMV. | 22412377
|
Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. Baryawno, N; Rahbar, A; Wolmer-Solberg, N; Taher, C; Odeberg, J; Darabi, A; Khan, Z; Sveinbjörnsson, B; FuskevÅg, OM; Segerström, L; Nordenskjöld, M; Siesjö, P; Kogner, P; Johnsen, JI; Söderberg-Nauclér, C The Journal of clinical investigation
121
4043-55
2010
Mostra il sommario
Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE2, which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did not affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor. Testo completo dell'articolo | 21946257
|