Psychosine-induced alterations in peroxisomes of twitcher mouse liver. Miguel Agustin Contreras,Ehtishamul Haq,Takuhiro Uto,Inderjit Singh,Avtar Kaur Singh Archives of biochemistry and biophysics
477
2008
Mostra il sommario
Krabbe disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/functions in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-alpha and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-alpha, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where psychosine-induced TNF-alpha and IL-6 compromise peroxisomal structure and functions. Testo completo dell'articolo | 18602885
|
Topology of ATP-binding domain of adrenoleukodystrophy gene product in peroxisomes. Contreras, M, et al. Arch. Biochem. Biophys., 334: 369-79 (1996)
1996
Mostra il sommario
Adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain fatty acids (> C22:0) due to the impaired activity of lignoceroyl-CoA ligase. The gene responsible for the disease was found to code for a 84-kDa peroxisomal integral membrane protein. Its amino acid sequence has high homology with the ATP-binding cassette superfamily of transporters and it is predicted to have six membrane-spanning segments and a putative ATP-binding domain. To define the function of ALDP, we studied the topology of its ATP-binding domain by using antibodies (1D6) against a hydrophobic domain (amino acid residues 279 to 482) and antibodies (Abct) against the C-terminal 15-amino-acid hydrophilic domain (amino acid residues 731 to 745) of ALDP. The observation of punctate fluorescence in permeabilized ALD fibroblasts, using Abct antibodies but not with antibodies against catalase, suggests that the C-terminal segment of ALDP is projected toward the cytoplasm from the peroxisomal membrane. Trypsinization of intact peroxisomes under isotonic conditions abolishes the Abct antibody recognition site, whereas the 1D6 antibodies identify a degradation product of 43-kDa protein that has been protected and retained by the membrane. This again suggests that the C-terminal portion of the ALDP protein is located on the outside (cytoplasmic) face of the peroxisomal membrane. Additional support for this conclusion was obtained by purification of the ALDP C-terminal domain, released from purified rat liver peroxisomes incubated with the cytosolic fraction, using blue-Sepharose affinity chromatography. A 47-kDa peptide retained by the column was recognized by Western blot analysis with Abct antibodies against the C-terminal sequence of ALDP and this polypeptide on polyvinylidene difluoride membrane was able to bind [gamma-32P]ATP in vitro in the presence of Mg2+. These results demonstrate that the C-terminal peptide containing the ATP-binding domains of ALDP is on the cytoplasmic surface of the peroxisomal membrane where this domain may function as an ATPase to support the functional role of ALDP in the peroxisomal membrane. | 8900413
|
A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Lombard-Platet, G, et al. Proc. Natl. Acad. Sci. U.S.A., 93: 1265-9 (1996)
1996
Mostra il sommario
Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene. | 8577752
|
The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Mosser, J, et al. Hum. Mol. Genet., 3: 265-71 (1994)
1993
Mostra il sommario
Adrenoleukodystrophy is a severe genetic demyelinating disease associated with an impairment of beta-oxidation of very long chain fatty acids (VLCFA) in peroxisomes. Earlier studies had suggested that a deficiency in VLCFA CoA synthetase was the primary defect. A candidate adrenoleukodystrophy gene has recently been cloned and was found unexpectedly to encode a putative ATP-binding cassette transporter. We have raised monoclonal antibodies against this protein, that detect a 75kDa band. This protein was absent in several patients with adrenoleukodystrophy. Immunofluorescence and immunoelectron microscopy showed that the adrenoleukodystrophy protein (ALDP) is associated with the peroxisomal membrane. Distinct immunofluorescence patterns were observed in cell lines from patients with Zellweger syndrome (a peroxisomal biogenesis disorder) belonging to different complementation groups. | 8004093
|