Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Peng, X; Hughes, EG; Moscato, EH; Parsons, TD; Dalmau, J; Balice-Gordon, RJ Annals of neurology
77
381-98
2015
Afficher le résumé
Autoimmune-mediated anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis is a severe but treatment-responsive disorder with prominent short-term memory loss and seizures. The mechanisms by which patient antibodies affect synapses and neurons leading to symptoms are poorly understood.The effects of patient antibodies on cultures of live rat hippocampal neurons were determined with immunostaining, Western blot, and electrophysiological analyses.We show that patient antibodies cause a selective decrease in the total surface amount and synaptic localization of GluA1- and GluA2-containing AMPARs, regardless of receptor subunit binding specificity, through increased internalization and degradation of surface AMPAR clusters. In contrast, patient antibodies do not alter the density of excitatory synapses, N-methyl-D-aspartate receptor (NMDAR) clusters, or cell viability. Commercially available AMPAR antibodies directed against extracellular epitopes do not result in a loss of surface and synaptic receptor clusters, suggesting specific effects of patient antibodies. Whole-cell patch clamp recordings of spontaneous miniature postsynaptic currents show that patient antibodies decrease AMPAR-mediated currents, but not NMDAR-mediated currents. Interestingly, several functional properties of neurons are also altered: inhibitory synaptic currents and vesicular γ-aminobutyric acid transporter (vGAT) staining intensity decrease, whereas the intrinsic excitability of neurons and short-interval firing increase.These results establish that antibodies from patients with anti-AMPAR encephalitis selectively eliminate surface and synaptic AMPARs, resulting in a homeostatic decrease in inhibitory synaptic transmission and increased intrinsic excitability, which may contribute to the memory deficits and epilepsy that are prominent in patients with this disorder. | | | 25369168
|
A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling. Vullhorst, D; Mitchell, RM; Keating, C; Roychowdhury, S; Karavanova, I; Tao-Cheng, JH; Buonanno, A Nature communications
6
7222
2015
Afficher le résumé
The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. | | | 26027736
|
AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Chen, KT; Tsai, MH; Wu, CH; Jou, MJ; Wei, IH; Huang, CC Frontiers in behavioral neuroscience
9
162
2015
Afficher le résumé
Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR-mTOR signaling pathway activity and facilitating AMPAR membrane insertion. Highlights-A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the mammalian target of rapamycin mTOR signaling pathway.-The antidepressant-like effects of sarcosine occur through the activated AMPAR-mTOR signaling pathway.-Sarcosine could enhance AMPAR membrane insertion via an AMPAR throughput. | | | 26150775
|
Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits. Hussain, S; Davanger, S PloS one
10
e0140868
2015
Afficher le résumé
Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density). We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2) and glutamate receptor subunit 1 (GluA1). Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism. | | | 26488171
|
Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex. Tucholski, J; Pinner, AL; Simmons, MS; Meador-Woodruff, JH PloS one
9
e94255
2014
Afficher le résumé
Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a critical role in AMPA receptor trafficking and function at the cell membrane. Studies have predominantly used rodent models to address altered glycosylation in human pathological conditions. Given the rate of mammalian brain evolution and the predicted rate of change in the brain-specific glycoproteome, we asked if there are species-specific changes in glycoprotein expression, focusing on the AMPA receptor. N-glycosylation of AMPA receptor subunits was investigated in rat (Rattus norvegicus), tree shrew (Tupaia glis belangeri), macaque (Macaca nemestrina), and human frontal cortex tissue using a combination of enzymatic deglycosylation and Western blot analysis, as well as lectin binding assays. We found that two AMPA receptor subunits, GluA2 and GluA4, are sensitive to deglycosylation with Endo H and PNGase F. When we enriched for glycosylated proteins using lectin binding assays, we found that all four AMPA receptor subunits are glycosylated, and were predominantly recognized by lectins that bind to glucose or mannose, N-acetylglucosamine (GlcNAc), or 1-6αfucose. We found differences in glycosylation between different subunits, as well as modest differences in glycosylation of homologous subunits between different species. | Western Blotting | | 24713873
|
Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. Gong, K; Kung, LH; Magni, G; Bhargava, A; Jasmin, L PloS one
9
e95491
2014
Afficher le résumé
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (less than 30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (greater than 30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception. | Immunofluorescence | | 24748330
|
Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Kelly, Michy P, et al. Cell. Signal., 26: 383-97 (2014)
2014
Afficher le résumé
3',5'-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague-Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization. | | | 24184653
|
Simvastatin treatment enhances NMDAR-mediated synaptic transmission by upregulating the surface distribution of the GluN2B subunit. Parent, MA; Hottman, DA; Cheng, S; Zhang, W; McMahon, LL; Yuan, LL; Li, L Cellular and molecular neurobiology
34
693-705
2014
Afficher le résumé
The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer's disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region. | | | 24687455
|
Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Lee, H; Brott, BK; Kirkby, LA; Adelson, JD; Cheng, S; Feller, MB; Datwani, A; Shatz, CJ Nature
509
195-200
2014
Afficher le résumé
The formation of precise connections between retina and lateral geniculate nucleus (LGN) involves the activity-dependent elimination of some synapses, with strengthening and retention of others. Here we show that the major histocompatibility complex (MHC) class I molecule H2-D(b) is necessary and sufficient for synapse elimination in the retinogeniculate system. In mice lacking both H2-K(b) and H2-D(b) (K(b)D(b)(-/-)), despite intact retinal activity and basal synaptic transmission, the developmentally regulated decrease in functional convergence of retinal ganglion cell synaptic inputs to LGN neurons fails and eye-specific layers do not form. Neuronal expression of just H2-D(b) in K(b)D(b)(-/-) mice rescues both synapse elimination and eye-specific segregation despite a compromised immune system. When patterns of stimulation mimicking endogenous retinal waves are used to probe synaptic learning rules at retinogeniculate synapses, long-term potentiation (LTP) is intact but long-term depression (LTD) is impaired in K(b)D(b)(-/-) mice. This change is due to an increase in Ca(2+)-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Restoring H2-D(b) to K(b)D(b)(-/-) neurons renders AMPA receptors Ca(2+) impermeable and rescues LTD. These observations reveal an MHC-class-I-mediated link between developmental synapse pruning and balanced synaptic learning rules enabling both LTD and LTP, and demonstrate a direct requirement for H2-D(b) in functional and structural synapse pruning in CNS neurons. | Western Blotting | | 24695230
|
Antigenic and mechanistic characterization of anti-AMPA receptor encephalitis. Gleichman, AJ; Panzer, JA; Baumann, BH; Dalmau, J; Lynch, DR Annals of clinical and translational neurology
1
180-189
2014
Afficher le résumé
Anti-AMPAR encephalitis is a recently discovered disorder characterized by the presence of antibodies in serum or cerebrospinal fluid against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Here, we examine the antigenic specificity of anti-AMPAR antibodies, screen for new patients, and evaluate functional effects of antibody treatment of neurons.We developed a fusion protein-based western blotting test for anti-AMPAR encephalitis antibodies. Antibody specificity was also evaluated using immunocytochemistry of HEK293 cells expressing deletion mutants of AMPAR subunits. Purified patient IgG or AMPAR antibody-depleted IgG was applied to live neuronal cultures; amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) were measured to evaluate functional effects of antibodies.Using both immunocytochemistry and fusion protein western blots, we defined an antigenic region of the receptor in the bottom lobe of the amino terminal domain. Additionally, we used fusion proteins to screen 70 individuals with neurologic symptoms of unknown cause and 44 patients with no neurologic symptoms or symptoms of known neuroimmunological origin for anti-AMPAR antibodies. Fifteen of the 70 individuals had anti-AMPAR antibodies, with broader antigenic reactivity patterns. Using purified IgG from an individual of the original cohort of anti-AMPAR encephalitis patients and a newly discovered patient, we found that application of IgG from either patient cohort caused an AMPAR antibody-dependent decrease in the amplitude and frequency of mEPSCs in cultured neurons.These results indicate that anti-AMPAR antibodies are widespread and functionally relevant; given the robust response of patients to immunomodulation, this represents a significant treatable patient population. | | | 24707504
|