Generation of Plasmodium falciparum parasite-inhibitory antibodies by immunization with recombinantly-expressed CyRPA. Favuzza, P; Blaser, S; Dreyer, AM; Riccio, G; Tamborrini, M; Thoma, R; Matile, H; Pluschke, G Malar J
15
161
2015
Afficher le résumé
The pathogenesis of malaria is primarily associated with blood-stage infection and there is strong evidence that antibodies specific for parasite blood-stage antigens can control parasitaemia. This provides a strong rationale for incorporation of asexual blood-stage antigen components into an effective multivalent malaria subunit vaccine. On the basis of available genome-wide transcriptomic and proteomic data, previously uncharacterized Plasmodium falciparum open reading frames were screened for new blood stage vaccine candidates. This has led to the identification of the cysteine-rich protective antigen (PfCyRPA), which forms together with PfRH5 and PfRipr a multiprotein complex that is crucial for erythrocyte invasion.Glycosylated and non-glycosylated variants of recombinant PfCyRPA were expressed and produced as secreted protein in mammalian cells. Adjuvanted formulations of purified PfCyRPA were tested to assess whether they can effectively elicit parasite inhibitory antibodies, and to investigate whether or not the glycosylation status affects antibody binding. For this purpose, two sets of PfCyRPA-specific mouse monoclonal antibodies (mAbs) have been raised and evaluated for functional activity.Generated PfCyRPA-specific mAbs, irrespective of the immunogen's glycosylation status, showed substantial parasite in vitro growth-inhibitory activity due to inhibition of erythrocyte invasion by merozoites. Furthermore, passive immunization experiments in P. falciparum infected NOD-scid IL2Rγ (null) mice engrafted with human erythrocytes demonstrated potent in vivo growth-inhibitory activity of generated mAbs.Recombinantly expressed PfCyRPA tested as adjuvanted vaccine formulations in mice elicited antibodies that significantly inhibit P. falciparum asexual blood stage parasite growth both in vitro and in vivo. These findings render PfCyRPA a promising blood-stage candidate antigen for inclusion into a multicomponent malaria subunit vaccine. | 26979066
|
Passive immunoprotection of Plasmodium falciparum-infected mice designates the CyRPA as candidate malaria vaccine antigen. Dreyer, AM; Matile, H; Papastogiannidis, P; Kamber, J; Favuzza, P; Voss, TS; Wittlin, S; Pluschke, G J Immunol
188
6225-37
2011
Afficher le résumé
An effective malaria vaccine could prove to be the most cost-effective and efficacious means of preventing severe disease and death from malaria. In an endeavor to identify novel vaccine targets, we tested predicted Plasmodium falciparum open reading frames for proteins that elicit parasite-inhibitory Abs. This has led to the identification of the cysteine-rich protective Ag (CyRPA). CyRPA is a cysteine-rich protein harboring a predicted signal sequence. The stage-specific expression of CyRPA in late schizonts resembles that of proteins known to be involved in merozoite invasion. Immunofluorescence staining localized CyRPA at the apex of merozoites. The entire protein is conserved as shown by sequencing of the CyRPA encoding gene from a diverse range of P. falciparum isolates. CyRPA-specific mAbs substantially inhibited parasite growth in vitro as well as in a P. falciparum animal model based on NOD-scid IL2Rγ(null) mice engrafted with human erythrocytes. In contrast to other P. falciparum mouse models, this system generated very consistent results and evinced a dose-response relationship and therefore represents an unprecedented in vivo model for quantitative comparison of the functional potencies of malaria-specific Abs. Our data suggest a role for CyRPA in erythrocyte invasion by the merozoite. Inhibition of merozoite invasion by CyRPA-specific mAbs in vitro and in vivo renders this protein a promising malaria asexual blood-stage vaccine candidate Ag. | 22593616
|
The N'-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Daubenberger, CA; Tisdale, EJ; Curcic, M; Diaz, D; Silvie, O; Mazier, D; Eling, W; Bohrmann, B; Matile, H; Pluschke, G Biol Chem
384
1227-37
2003
Afficher le résumé
Spatial and temporal distribution of the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (pfGAPDH) and aldolase (pfAldolase) of Plasmodium falciparum were investigated using specific mAbs and indirect immunofluorescence analysis (IFA). Both glycolytic enzymes were co-localized during ring and trophozoite stages of both liver and asexual blood stage parasites. During schizogony, pfGAPDH became associated with the periphery of the parasites and eventually accumulated in the apical region of merozoites, while pfAldolase showed no segregation. Subcellular fractionation experiments demonstrated that pfGAPDH was found in both the membrane-containing pellet and the supernatant fraction of parasite lysates. In contrast, pfAldolase was only found in the supernatant fraction. A quantitative binding assay showed that pfGAPDH could be recruited to HeLa cell microsomal membranes in response to mammalian GTPase Rab2, indicating that Rab2-dependent recruitment of cytosolic components to membranes is conserved in evolution. Two overlapping fragments of pfGAPDH (residues 1-192 and 133-337) were evaluated in the microsomal binding assay. We found that the N'-terminal fragment competitively inhibited Rab2-stimulated pfGAPDH recruitment. Thus, the domain mediating the evolutionarily conserved Rab2-dependent membrane recruitment is located in the N'-terminus of GAPDH. Together, these results suggest that pfGAPDH exerts non-glycolytic function(s) in P. falciparum, possibly including a role in vesicular transport and biogenesis of apical organelles. | 12974391
|