Millipore Sigma Vibrant Logo
 

DNA Damage


1188 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,129)
  • (4)
  • (1)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function. 25260588

    BRCA1 is involved in many disparate cellular functions, including DNA damage repair, cell-cycle checkpoint activation, gene transcriptional regulation, DNA replication, centrosome function and others. The majority of evidence strongly favors the maintenance of genomic integrity as a principal tumor suppressor activity of BRCA1. At the same time some functional aspects of BRCA1 are not fully understood. Here, a HAC (human artificial chromosome) module with a regulated centromere was constructed for delivery and expression of the 90 kb genomic copy of the BRCA1 gene into BRCA1-deficient human cells. A battery of functional tests was carried out to demonstrate functionality of the exogenous BRCA1. In separate experiments, we investigated the role of BRCA1 in maintenance of heterochromatin integrity within a human functional kinetochore. We demonstrated that BRCA1 deficiency results in a specific activation of transcription of higher-order alpha-satellite repeats (HORs) assembled into heterochromatin domains flanking the kinetochore. At the same time no detectable elevation of transcription was observed within HORs assembled into centrochromatin domains. Thus, we demonstrated a link between BRCA1 deficiency and kinetochore dysfunction and extended previous observations that BRCA1 is required to silence transcription in heterochromatin in specific genomic loci. This supports the hypothesis that epigenetic alterations of the kinetochore initiated in the absence of BRCA1 may contribute to cellular transformation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. 22139836

    Accumulation of DNA damage and deficiency in DNA repair potentially contribute to the progressive neuronal loss in neurodegenerative disorders, including Alzheimer disease (AD). In multicellular eukaryotes, double strand breaks (DSBs), the most lethal form of DNA damage, are mainly repaired by the nonhomologous end joining pathway, which relies on DNA-PK complex activity. Both the presence of DSBs and a decreased end joining activity have been reported in AD brains, but the molecular player causing DNA repair dysfunction is still undetermined. β-Amyloid (Aβ), a potential proximate effector of neurotoxicity in AD, might exert cytotoxic effects by reactive oxygen species generation and oxidative stress induction, which may then cause DNA damage. Here, we show that in PC12 cells sublethal concentrations of aggregated Aβ(25-35) inhibit DNA-PK kinase activity, compromising DSB repair and sensitizing cells to nonlethal oxidative injury. The inhibition of DNA-PK activity is associated with down-regulation of the catalytic subunit DNA-PK (DNA-PKcs) protein levels, caused by oxidative stress and reversed by antioxidant treatment. Moreover, we show that sublethal doses of Aβ(1-42) oligomers enter the nucleus of PC12 cells, accumulate as insoluble oligomeric species, and reduce DNA-PK kinase activity, although in the absence of oxidative stress. Overall, these findings suggest that Aβ mediates inhibition of the DNA-PK-dependent nonhomologous end joining pathway contributing to the accumulation of DSBs that, if not efficiently repaired, may lead to the neuronal loss observed in AD.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-457
    Nombre del producto:
    Anti-Histone H1 Antibody, clone AE-4
  • RhoB promotes γH2AX dephosphorylation and DNA double-strand break repair. 24912678

    Unlike other Rho GTPases, RhoB is rapidly induced by DNA damage, and its expression level decreases during cancer progression. Because inefficient repair of DNA double-strand breaks (DSBs) can lead to cancer, we investigated whether camptothecin, an anticancer drug that produces DSBs, induces RhoB expression and examined its role in the camptothecin-induced DNA damage response. We show that in camptothecin-treated cells, DSBs induce RhoB expression by a mechanism that depends notably on Chk2 and its substrate HuR, which binds to RhoB mRNA and protects it against degradation. RhoB-deficient cells fail to dephosphorylate γH2AX following camptothecin removal and show reduced efficiency of DSB repair by homologous recombination. These cells also show decreased activity of protein phosphatase 2A (PP2A), a phosphatase for γH2AX and other DNA damage and repair proteins. Thus, we propose that DSBs activate a Chk2-HuR-RhoB pathway that promotes PP2A-mediated dephosphorylation of γH2AX and DSB repair. Finally, we show that RhoB-deficient cells accumulate endogenous γH2AX and chromosomal abnormalities, suggesting that RhoB loss increases DSB-mediated genomic instability and tumor progression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • A variant in the CHEK2 promoter at a methylation site relieves transcriptional repression and confers reduced risk of lung cancer. 20462940

    Checkpoint kinase (CHEK) 2, a tumor suppressor gene, plays an essential role in the DNA damage checkpoint response cascade. We first investigated two polymorphisms in the proximal promoter of the CHEK2 gene and evaluated their associations with the risk of lung cancer in a case-control study using 500 incident lung cancer cases and 517 cancer-free controls. We found that CHEK2 rs2236141 -48 G > A was significantly associated with lung cancer risk (P = 0.0018). Similar results were obtained in a follow-up replication study in 575 lung cancer patients and 589 controls (P = 0.042). Quantitative polymerase chain reaction showed that individuals with the G allele had lower levels of CHEK2 transcripts in peripheral blood mononuclear cells and normal lung tissues. The -48 G-->A variant eliminated a methylation site and thereby relieve the transcriptional repression of CHEK2. Therefore, this polymorphism affected downstream transcription through genetic and epigenetic modifications. Luciferase reporter assays demonstrated that the major G allele significantly attenuated reporter gene expression when methylated. Electrophoretic Mobility shift assays and surface plasmon resonance revealed that the methylated G allele increased transcription factor accessibility. We used in vivo chromatin immunoprecipitation to confirm that the relevant transcription factor was Sp1. Using lung tissue heterozygous for the G/A single-nucleotide polymorphism, we found that Sp1 acted as a repressor and had a stronger binding affinity for the G allele. These results support our hypothesis that the CHEK2 rs2236141 variant modifies lung cancer susceptibility in the Chinese population by affecting CHEK2 expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. 26068472

    DNA double-strand breaks (DSBs) are the most severe type of DNA damage and are primarily repaired by non-homologous end joining (NHEJ) and homologous recombination (HR) in the G1 and S/G2 phase, respectively. Although CtBP-interacting protein (CtIP) is crucial in DNA end resection during HR following DSBs, little is known about how CtIP levels increase in an S phase-specific manner. Here, we show that Serpine mRNA binding protein 1 (SERBP1) regulates CtIP expression at the translational level in S phase. In response to camptothecin-mediated DNA DSBs, CHK1 and RPA2 phosphorylation, which are hallmarks of HR activation, was abrogated in SERBP1-depleted cells. We identified CtIP mRNA as a binding target of SERBP1 using RNA immunoprecipitation-coupled RNA sequencing, and confirmed SERBP1 binding to CtIP mRNA in S phase. SERBP1 depletion resulted in reduction of polysome-associated CtIP mRNA and concomitant loss of CtIP expression in S phase. These effects were reversed by reconstituting cells with wild-type SERBP1, but not by SERBP1 ΔRGG, an RNA binding defective mutant, suggesting regulation of CtIP translation by SERBP1 association with CtIP mRNA. These results indicate that SERBP1 affects HR-mediated DNA repair in response to DNA DSBs by regulation of CtIP translation in S phase.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. 20631324

    The BRCA-1 protein is a tumor suppressor involved in repair of DNA damage. Epigenetic mechanisms contribute to its reduced expression in sporadic breast tumors. Through diet, humans are exposed to a complex mixture of xenobiotics and natural ligands of the aromatic hydrocarbon receptor (AhR), which contributes to the etiology of various types of cancers. The AhR binds xenobiotics, endogenous ligands, and many natural dietary bioactive compounds, including the phytoalexin resveratrol (Res). In estrogen receptor- alpha (ER alpha )-positive and BRCA-1 wild-type MCF-7 breast cancer cells, we investigated the influence of AhR activation with the agonist 2,3,7,8 tetrachlorobenzo(p)dioxin (TCDD) on epigenetic regulation of the BRCA-1 gene and the preventative effects of Res. We report that activation and recruitment of the AhR to the BRCA-1 promoter hampers 17 beta -estradiol (E2)-dependent stimulation of BRCA-1 transcription and protein levels. These inhibitory effects are paralleled by reduced occupancy of ER alpha , acetylated histone (AcH)-4, and AcH3K9. Conversely, the treatment with TCDD increases the association of mono-methylated-H3K9, DNA-methyltransferase-1 (DNMT1), and methyl-binding domain protein-2 with the BRCA-1 promoter and stimulates the accumulation of DNA strand breaks. The AhR-dependent repression of BRCA-1 expression is reversed by small interference for the AhR and DNMT1 or pretreatment with Res, which reduces TCDD-induced DNA strand breaks. These results support the hypothesis that epigenetic silencing of the BRCA-1 gene by the AhR is preventable with Res and provide the molecular basis for the development of dietary strategies based on natural AhR antagonists.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • A PTCH1 homolog transcriptionally activated by p53 suppresses Hedgehog signaling. 25296753

    The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells ... 23722522

    DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final 'end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4381
    Nombre del producto:
    Anti-TRA-1-81 Antibody, clone TRA-1-81
  • TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. 21149450

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABE1463
    Nombre del producto:
    Anti-TopBP1 Antibody
  • Elevated cyclin g2 expression intersects with DNA damage checkpoint signaling and is required for a potent g2/m checkpoint arrest response to Doxorubicin. 22589537

    To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB374
    Nombre del producto:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5