Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Venugopal Thayanithy,Aaron L Sarver,Reena V Kartha,Lihua Li,Andrea Y Angstadt,Matthew Breen,Clifford J Steer,Jaime F Modiano,Subbaya Subramanian Bone
50
2011
Mostrar resumen
Osteosarcoma (OS) is the common histological form of primary bone cancer and one of the leading aggressive cancers in children under age fifteen. Although several genetic predisposing conditions have been associated with OS the understanding of its molecular etiology is limited. Here, we show that microRNAs (miRNAs) at the chr.14q32 locus are significantly downregulated in osteosarcoma compared to normal bone tissues. Bioinformatic predictions identified that a subset of 14q32 miRNAs (miR-382, miR-369-3p, miR-544 and miR-134) could potentially target cMYC transcript. The physical interaction between these 14q32 miRNAs and cMYC was validated using reporter assays. Further, restoring expression of these four 14q32 miRNAs decreased cMYC levels and induced apoptosis in Saos2 cells. We also show that exogenous expression of 14q32 miRNAs in Saos2 cells significantly downregulated miR-17-92, a transcriptional target of cMYC. The pro-apoptotic effect of 14q32 miRNAs in Saos2 cells was rescued either by overexpression of cMYC cDNA without the 3'UTR or with miR-17-92 cluster. Further, array comparative genomic hybridization studies showed no DNA copy number changes at 14q32 locus in OS patient samples suggesting that downregulation of 14q32 miRNAs are not due to deletion at this locus. Together, our data support a model where the deregulation of a network involving 14q32 miRNAs, cMYC and miR-17-92 miRNAs could contribute to osteosarcoma pathogenesis. | 22037351
|
The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. Jun Liu,Xiaodong Wang,Qiming Jin,Taocong Jin,Syweren Chang,Zhaocheng Zhang,Agata Czajka-Jakubowska,William V Giannobile,Jacques E Nör,Brian H Clarkson,Jacques E Nör Biomaterials
33
2011
Mostrar resumen
In this study, the effect of ordered rod-like FA coatings of metal discs on adipose-derived stem cell (ASC)'s growth, differentiation and mineralization was studied in vitro; and their mineral inductive effects in vivo. After 3 and 7 days, the cell number on the metal surfaces was significantly higher than those on the ordered and disordered FA surfaces. However, after 4 weeks much greater amounts of mineral formation was induced on the two FA surfaces with and even without osteogenesis induction. The osteogenic profiles showed the up regulation of a set of pro-osteogenic transcripts and bone mineralization phenotypic markers when the ASCs were grown on FA surfaces compared to metal surfaces at 7 and 21 days. In addition to BMP and TGFβ signaling pathways, EGF and FGF pathways also appeared to be involved in ASC differentiation and mineralization. In vivo studies showed accelerated and enhanced mineralized tissue formation integrated within ordered FA coatings. After 5 weeks, over 80% of the ordered FA coating was integrated with a mineralized tissue layer covering the implants. Both the intrinsic properties of the FA crystals and the topography of the FA coating appeared to dominate the cell differentiation and mineralization process. | 22483243
|