Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Rao, RA; Dhele, N; Cheemadan, S; Ketkar, A; Jayandharan, GR; Palakodeti, D; Rampalli, S Scientific reports
5
8229
2015
Mostrar resumen
Factor induced reprogramming of fibroblasts is an orchestrated but inefficient process. At the epigenetic level, it results in drastic chromatin changes to erase the existing somatic "memory" and to establish the pluripotent state. Accordingly, alterations of chromatin regulators including Ezh2 influence iPSC generation. While the role of individual transcription factors in resetting the chromatin landscape during iPSC generation is increasingly evident, their engagement with chromatin modulators remains to be elucidated. In the current study, we demonstrate that histone methyl transferase activity of Ezh2 is required for mesenchymal to epithelial transition (MET) during human iPSC generation. We show that the H3K27me3 activity favors induction of pluripotency by transcriptionally targeting the TGF-β signaling pathway. We also demonstrate that the Ezh2 negatively regulates the expression of pro-EMT miRNA's such as miR-23a locus during MET. Unique association of Ezh2 with c-Myc was required to silence the aforementioned circuitry. Collectively, our findings provide a mechanistic understanding by which Ezh2 restricts the somatic programme during early phase of cellular reprogramming and establish the importance of Ezh2 dependent H3K27me3 activity in transcriptional and miRNA modulation during human iPSC generation. | | 25648270
|
YY1 DNA binding and interaction with YAF2 is essential for Polycomb recruitment. Basu, A; Wilkinson, FH; Colavita, K; Fennelly, C; Atchison, ML Nucleic acids research
42
2208-23
2014
Mostrar resumen
Polycomb Group (PcG) proteins are crucial for epigenetic inheritance of cell identity and are functionally conserved from Drosophila to humans. PcG proteins regulate expression of homeotic genes and are essential for axial body patterning during development. Earlier we showed that transcription factor YY1 functions as a PcG protein. YY1 also physically interacts with YAF2, a homolog of RYBP. Here we characterize the mechanism and physiologic relevance of this interaction. We found phenotypic and biochemical correction of dRYBP mutant flies by mouse YAF2 demonstrating functional conservation across species. Further biochemical analysis revealed that YAF2 bridges interaction between YY1 and the PRC1 complex. ChIP assays in HeLa cells showed that YAF2 is responsible for PcG recruitment to DNA, which is mediated by YY1 DNA binding. Knock-down of YY1 abrogated PcG recruitment, which was not compensated by exogenous YAF2 demonstrating that YY1 DNA binding is a priori necessary for Polycomb assembly on chromatin. Finally, we found that although YAF2 and RYBP regulate a similar number of Polycomb target genes, there are very few genes that are regulated by both implying functional distinction between the two proteins. We present a model of YAF2-dependent and independent PcG DNA recruitment by YY1. | Human | 24285299
|
JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. Tange, S; Oktyabri, D; Terashima, M; Ishimura, A; Suzuki, T PloS one
9
e115684
2014
Mostrar resumen
Histone methylation plays a crucial role in various biological and pathological processes including cancer development. In this study, we discovered that JARID2, an interacting component of Polycomb repressive complex-2 (PRC2) that catalyzes methylation of lysine 27 of histone H3 (H3K27), was involved in Transforming Growth Factor-beta (TGF-ß)-induced epithelial-mesenchymal transition (EMT) of A549 lung cancer cell line and HT29 colon cancer cell line. The expression of JARID2 was increased during TGF-ß-induced EMT of these cell lines and knockdown of JARID2 inhibited TGF-ß-induced morphological conversion of the cells associated with EMT. JARID2 knockdown itself had no effect in the expression of EMT-related genes but antagonized TGF-ß-dependent expression changes of EMT-related genes such as CDH1, ZEB family and microRNA-200 family. Chromatin immunoprecipitation assays showed that JARID2 was implicated in TGF-ß-induced transcriptional repression of CDH1 and microRNA-200 family genes through the regulation of histone H3 methylation and EZH2 occupancies on their regulatory regions. Our study demonstrated a novel role of JARID2 protein, which may control PRC2 recruitment and histone methylation during TGF-ß-induced EMT of lung and colon cancer cell lines. | | 25542019
|
E2f6-mediated repression of the meiotic Stag3 and Smc1β genes during early embryonic development requires Ezh2 and not the de novo methyltransferase Dnmt3b. Leseva, M; Santostefano, KE; Rosenbluth, AL; Hamazaki, T; Terada, N Epigenetics
8
873-84
2013
Mostrar resumen
The E2f6 transcriptional repressor is an E2F-family member essential for the silencing of a group of meiosis-specific genes in somatic tissues. Although E2f6 has been shown to associate with both polycomb repressive complexes (PRC) and the methyltransferase Dnmt3b, the cross-talk between these repressive machineries during E2f6-mediated gene silencing has not been clearly demonstrated yet. In particular, it remains largely undetermined when and how E2f6 establishes repression of meiotic genes during embryonic development. We demonstrate here that the inactivation of a group of E2f6 targeted genes, including Stag3 and Smc1β, first occurs at the transition from mouse embryonic stem cells (ESCs) to epiblast stem cells (EpiSCs), which represent pre- and post-implantation stages, respectively. This process was accompanied by de novo methylation of their promoters. Of interest, despite a clear difference in DNA methylation status, E2f6 was similarly bound to the proximal promoter regions both in ESCs and EpiSCs. Neither E2f6 nor Dnmt3b overexpression in ESCs decreased meiotic gene expression or increased DNA methylation, indicating that additional factors are required for E2f6-mediated repression during the transition. When the SET domain of Ezh2, a core subunit of the PRC2 complex, was deleted, however, repression of Stag3 and Smc1β during embryoid body differentiation was largely impaired, indicating that the event required the enzymatic activity of Ezh2. In addition, repression of Stag3 and Smc1β occurred in the absence of Dnmt3b. The data presented here suggest a primary role of PRC2 in E2f6-mediated gene silencing of the meiotic genes. | | 23880518
|
BRG1 promotes survival of UV-irradiated melanoma cells by cooperating with MITF to activate the melanoma inhibitor of apoptosis gene. Saladi, SV; Wong, PG; Trivedi, AR; Marathe, HG; Keenen, B; Aras, S; Liew, ZQ; Setaluri, V; de la Serna, IL Pigment cell & melanoma research
26
377-91
2013
Mostrar resumen
Microphthalmia-associated transcription factor (MITF) is a survival factor in melanocytes and melanoma cells. MITF regulates expression of antiapoptotic genes and promotes lineage-specific survival in response to ultraviolet (UV) radiation and to chemotherapeutics. SWI/SNF chromatin-remodeling enzymes interact with MITF to regulate MITF target gene expression. We determined that the catalytic subunit, BRG1, of the SWI/SNF complex protects melanoma cells against UV-induced death. BRG1 prevents apoptosis in UV-irradiated melanoma cells by activating expression of the melanoma inhibitor of apoptosis (ML-IAP). Down-regulation of ML-IAP compromises BRG1-mediated survival of melanoma cells in response to UV radiation. BRG1 regulates ML-IAP expression by cooperating with MITF to promote transcriptionally permissive chromatin structure on the ML-IAP promoter. The alternative catalytic subunit, BRM, and the BRG1-associated factor, BAF180, were found to be dispensable for elevated expression of ML-IAP in melanoma cells. Thus, we illuminate a lineage-specific mechanism by which a specific SWI/SNF subunit, BRG1, modulates the cellular response to DNA damage by regulating an antiapoptotic gene and implicate this subunit of the SWI/SNF complex in mediating the prosurvival function of MITF. | | 23480510
|
Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Reddington, JP; Perricone, SM; Nestor, CE; Reichmann, J; Youngson, NA; Suzuki, M; Reinhardt, D; Dunican, DS; Prendergast, JG; Mjoseng, H; Ramsahoye, BH; Whitelaw, E; Greally, JM; Adams, IR; Bickmore, WA; Meehan, RR Genome biology
14
R25
2013
Mostrar resumen
DNA methylation and the Polycomb repression system are epigenetic mechanisms that play important roles in maintaining transcriptional repression. Recent evidence suggests that DNA methylation can attenuate the binding of Polycomb protein components to chromatin and thus plays a role in determining their genomic targeting. However, whether this role of DNA methylation is important in the context of transcriptional regulation is unclear.By genome-wide mapping of the Polycomb Repressive Complex 2-signature histone mark, H3K27me3, in severely DNA hypomethylated mouse somatic cells, we show that hypomethylation leads to widespread H3K27me3 redistribution, in a manner that reflects the local DNA methylation status in wild-type cells. Unexpectedly, we observe striking loss of H3K27me3 and Polycomb Repressive Complex 2 from Polycomb target gene promoters in DNA hypomethylated cells, including Hox gene clusters. Importantly, we show that many of these genes become ectopically expressed in DNA hypomethylated cells, consistent with loss of Polycomb-mediated repression.An intact DNA methylome is required for appropriate Polycomb-mediated gene repression by constraining Polycomb Repressive Complex 2 targeting. These observations identify a previously unappreciated role for DNA methylation in gene regulation and therefore influence our understanding of how this epigenetic mechanism contributes to normal development and disease. | | 23531360
|
Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation. Veazey, KJ; Carnahan, MN; Muller, D; Miranda, RC; Golding, MC Alcoholism, clinical and experimental research
37
1111-22
2013
Mostrar resumen
From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation.Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques.We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences.Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic program. These observations indicate that alterations to chromatin structure may represent a crucial component of alcohol teratogenesis and progress toward a better understanding of the developmental origins of fetal alcohol spectrum disorders. | | 23488822
|
Cooperation between Polycomb and androgen receptor during oncogenic transformation. Zhao, JC; Yu, J; Runkle, C; Wu, L; Hu, M; Wu, D; Liu, JS; Wang, Q; Qin, ZS; Yu, J Genome research
22
322-31
2011
Mostrar resumen
Androgen receptor (AR) is a hormone-activated transcription factor that plays important roles in prostate development and function, as well as malignant transformation. The downstream pathways of AR, however, are incompletely understood. AR has been primarily known as a transcriptional activator inducing prostate-specific gene expression. Through integrative analysis of genome-wide AR occupancy and androgen-regulated gene expression, here we report AR as a globally acting transcriptional repressor. This repression is mediated by androgen-responsive elements (ARE) and dictated by Polycomb group protein EZH2 and repressive chromatin remodeling. In embryonic stem cells, AR-repressed genes are occupied by EZH2 and harbor bivalent H3K4me3 and H3K27me3 modifications that are characteristic of differentiation regulators, the silencing of which maintains the undifferentiated state. Concordantly, these genes are silenced in castration-resistant prostate cancer rendering a stem cell-like lack of differentiation and tumor progression. Collectively, our data reveal an unexpected role of AR as a transcriptional repressor inhibiting non-prostatic differentiation and, upon excessive signaling, resulting in cancerous dedifferentiation. | | 22179855
|
Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Gang Ren,Stavroula Baritaki,Himangi Marathe,Jingwei Feng,Sungdae Park,Sandy Beach,Peter S Bazeley,Anwar B Beshir,Gabriel Fenteany,Rohit Mehra,Stephanie Daignault,Fahd Al-Mulla,Evan Keller,Ben Bonavida,Ivana de la Serna,Kam C Yeung Cancer research
72
2011
Mostrar resumen
Epigenetic modifications such as histone methylation play an important role in human cancer metastasis. Enhancer of zeste homolog 2 (EZH2), which encodes the histone methyltransferase component of the polycomb repressive complex 2 (PRC2), is overexpressed widely in breast and prostate cancers and epigenetically silences tumor suppressor genes. Expression levels of the novel tumor and metastasis suppressor Raf-1 kinase inhibitor protein (RKIP) have been shown to correlate negatively with those of EZH2 in breast and prostate cell lines as well as in clinical cancer tissues. Here, we show that the RKIP/EZH2 ratio significantly decreases with the severity of disease and is negatively associated with relapse-free survival in breast cancer. Using a combination of loss- and gain-of-function approaches, we found that EZH2 negatively regulated RKIP transcription through repression-associated histone modifications. Direct recruitment of EZH2 and suppressor of zeste 12 (Suz12) to the proximal E-boxes of the RKIP promoter was accompanied by H3-K27-me3 and H3-K9-me3 modifications. The repressing activity of EZH2 on RKIP expression was dependent on histone deacetylase promoter recruitment and was negatively regulated upstream by miR-101. Together, our findings indicate that EZH2 accelerates cancer cell invasion, in part, via RKIP inhibition. These data also implicate EZH2 in the regulation of RKIP transcription, suggesting a potential mechanism by which EZH2 promotes tumor progression and metastasis. | | 22505648
|
Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene epigenetically deregulated in hyperparathyroid tumors by histone H3 lysine modification. Svedlund, J; Koskinen Edblom, S; Marquez, VE; Åkerström, G; Björklund, P; Westin, G J Clin Endocrinol Metab
97
E1307-15
2011
Mostrar resumen
Primary hyperparathyroidism (pHPT) resulting from parathyroid tumors is a common endocrine disorder with incompletely understood etiology. In renal failure, secondary hyperparathyroidism (sHPT) occurs with multiple tumor development as a result of calcium and vitamin D regulatory disturbance.The aim of the study was to investigate whether HIC1 may act as a tumor suppressor in the parathyroid glands and whether deregulated expression involves epigenetic mechanisms.Parathyroid tumors from patients with pHPT included single adenomas, multiple tumors from the same patient, and cancer. Hyperplastic parathyroid glands from patients with sHPT and hypercalcemia and normal parathyroid tissue specimens were included in the study. Quantitative RT-PCR, bisulfite pyrosequencing, colony formation assay, chromatin immunoprecipitation, and RNA interference was used.HIC1 was generally underexpressed regardless of the hyperparathyroid disease state including multiple parathyroid tumors from the same patient, and overexpression of HIC1 led to a decrease in clonogenic survival of parathyroid tumor cells. Only the carcinomas showed a high methylation level and reduced HIC1 expression. Cell culture experiments, including use of primary parathyroid tumor cells prepared directly after operation, the general histone methyltransferase inhibitor 3-deazaneplanocin A, chromatin immunoprecipitation, and RNA interference of DNA methyltransferases and EZH2 (enhancer of zeste homolog 2), supported a role of repressive histone H3 modifications (H3K27me2/3) rather than DNA methylation in repression of HIC1.The results strongly support a growth-regulatory role of HIC1 in the parathyroid glands and suggest that perturbed expression of HIC1 may represent an early event during tumor development. Repressive histone modification H3K27me2/3 is involved in repression of HIC1 expression in hyperparathyroid tumors. | | 22544915
|